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Deep Non-linear Metric Learning for 3D Shape
Retrieval

Jin Xie, Guoxian Dai, Fan Zhu, Ling Shao, and Yi Fang

Abstract—Effective 3D shape retrieval is an important problem
in 3D shape analysis. Recently, feature learning based shape
retrieval methods have been widely studied, where the distance
metrics between 3D shape descriptors are usually hand-crafted.
In this paper, motivated by the fact that deep neural network
has the good ability to model non-linearity, we propose to
learn an effective non-linear distance metric between 3D shape
descriptors for retrieval. First, the locality-constrained linear
coding method is employed to encode each vertex on the shape
and the encoding coefficient histogram is formed as the global
3D shape descriptor to represent the shape. Then, a novel deep
metric network is proposed to learn a non-linear transformation
to map the 3D shape descriptors to a non-linear feature space.
The proposed deep metric network minimizes a discriminative
loss function that can enforce the similarity between a pair of
samples from the same class to be small and the similarity
between a pair of samples from different classes to be large.
Finally, the distance between the outputs of the metric network
is used as the similarity for shape retrieval. The proposed
method is evaluated on the McGill, SHREC’10 ShapeGoogle and
SHREC’14 Human shape datasets. Experimental results on the
three datasets validate the effectiveness of the proposed method.

Index Terms—3D shape retrieval, 3D shape descriptor, deep
metric learning, neural network, heat kernel signature.

I. INTRODUCTION

S INCE 3D models have been widely applied to indus-
trial design, architectural design and entertainment, etc,

modeling, visualizing and analyzing 3D models [1–6] have
been receiving more and more attention. Particularly, with
the increasing growth of 3D models, content based 3D shape
retrieval became an important research topic in the community
of computer vision and computer graphics. The objective
of 3D shape retrieval is to search 3D shapes similar to a
query shape using shape properties from a large collection
of 3D shapes. Shape feature extraction and matching are
key steps for the content based 3D shape retrieval. Shape
feature extraction should capture the distinctive properties of
shapes and discriminatively represent shapes. Shape matching
is the process of determining how similar two shapes are by
calculating the distance metric between the shape features. It
is desirable that the within-class distance for shapes is as small
as possible while the between-class distance for shapes is as
large as possible.

Extensive research efforts have been dedicated to 3D shape
retrieval in the past decades. Since a 3D model can be
represented as a group of 2D images at different viewpoints,
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plenty of view based 3D shape retrieval methods have been
proposed. The key step in view based 3D shape retrieval
is how to perform multiple view matching. Chen et al. [7]
proposed the light field descriptor (LFD), where the descriptor
is computed from a set of contours obtained from the vertices
of a dodecahedron. Based on the projected 2D images, Zernike
moments and Fourier transform are employed to extract the
features of the images. The best matching between two LFDs
is used as the similarity between 3D shapes for retrieval.
Ansary et al. [8] proposed an adaptive view clustering (AVC)
method. The representative views are optimally selected with
the Bayesian information criteria. A probabilistic method is
then employed to calculate the similarity between two 3D
shapes for retrieval. In addition, the Bag-of-Words (BOW)
methods are also applied on the projected images to extract
features for retrieval. In [9], each 3D shape is rendered
to a group of depth images. Then the SIFT features are
extracted from these depth images and the BOW features
are learned from a set of SIFT descriptors to represent 3D
shapes. Recently, Bai et al. [10] proposed the two layer coding
framework to encode the depth images to form the 3D shape
descriptor for retrieval.

Apart from the view based shape retrieval methods, the
local shape descriptor based retrieval methods mainly focus
on learning a global representation from a set of local shape
descriptors. These local shape descriptors include global point
signature (GPS) [11], heat kernel signature (HKS)[12], scale
invariant heat kernel signature (SI-HKS) [13], wave kernel
signature (WKS) [14], 3D SIFT [15], 3D shape context [16]
and mesh HOG [17], etc. In [18], Bronstein et al. proposed to
learn the spatially sensitive BOW feature (called shapegoogle
descriptor ) from a set of HKSs for shape retrieval. Tabia et al.
[19] extracted the covariances of the patches on the meshed
surface and learned a dictionary of words from the Riemannian
manifold of the symmetric positive definite matrices. Then
the histogram of the words is used as the global descriptor
for retrieval. By employing sparse coding, Litman et al. [20]
constructed a bi-level supervised dictionary to learn encoded
representation coefficients from the local shape descriptors
HKSs/SI-HKSs for retrieval. EINagh et al. [21] proposed the
compact HKS-based BOW descriptor for 3D shape retrieval.
By selecting the critical points on the shape and the scales
of the HKSs of the selected points, a compact HKS-based
feature representation can be formed to describe the shape. A
global shape descriptor is then learned by applying the BOW
method to the compact HKS-based feature vectors. Limberger
et al. [21] employed the Fisher vector encoding framework
to develop a shape descriptor for retrieval, where a Gaussian
mixture model is used to fit the distribution of the point
signatures (e.g., HKS and WKS) on the shape. The shape
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descriptor, i.e., the Fisher vector, is formed by stacking the
mean and covariance deviation vectors for each of modes in
the Gaussian mixture model. Xie et al. [22] first developed
a multiscale shape distribution to represent shapes. Then a
deep discriminative auto-encoder is proposed by imposing the
Fisher discrimination criterion on the neurons in the hidden
layer and the neurons from multiple discriminative auto-
encoders are concatenated to form a global shape descriptor
for retrieval.

Nonetheless, these 3D shape retrieval methods mainly focus
on shape feature extraction. Once the shape feature is ex-
tracted, the hand-crafted distance metric such as the Euclidean
distance and the Hausdorff distance, is used as the similarity
for retrieval. In [23], the manifold ranking based unsupervised
metric learning method is used to compute the distance for
retrieval, where the high dimensional shape feature space
is represented by a Laplacian graph. In [18], the similarity
sensitive hashing (SSH) is employed to learn the distance for
shape retrieval. The SSH based metric learning method aims
to learn a linear transformation to map the BOW features to
the linear feature space. However, due to large deformations
of 3D shapes, these methods cannot characterize the manifold
of 3D shapes well.

Motivated by the favorable ability of deep neural network
to model non-linearity of samples, in this paper, we propose a
novel deep non-linear metric learning method for 3D shape
retrieval. 3D shapes are usually with large deformations,
which results in the large intra-class variations of the shapes.
Therefore, it is desirable to develop a non-linear metric to
measure the similarity between 3D shapes so that the intra-
class variations can be reduced. First, we employ the locality-
constrained linear coding (LLC) method [24] to encode each
vertex of 3D shapes to form a global 3D shape descriptor.
We then develop a deep metric network to learn a non-linear
transformation to map the global 3D descriptors to a non-linear
feature space. The learned distance metric can minimize a
discriminative loss function so that the similarities between the
pairs of samples from the same class are as small as possible
and the similarities between the pairs of samples from different
classes are as large as possible. Furthermore, in order to make
the learned distance metric to be more discriminative, we also
encourage that the neurons in the hidden layers of the metric
network are as close as possible to their means. Experimental
results on the three 3D shape datasets demonstrate that the
effectiveness of the proposed method for 3D shape retrieval.

The main contribution of this paper is that we develop a
novel deep metric network to learn a non-linear distance metric
for 3D shape retrieval. Although the linear metric was learned
for shape retrieval in [18], little attempt has been made on
the deep neural network to learn a non-linear metric for 3D
shape retrieval. We exploit the discriminative and non-linear
information of the constructed deep metric network to map
the global 3D shape descriptor to a non-linear feature space.
Compared to the learned linear metric, the learned deep non-
linear metric can measure the distances between global 3D
shape descriptors for retrieval better.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the scale invariant heat kernel signature.

In Section III, we present the proposed deep non-linear metric
learning method for 3D shape retrieval. Section IV performs
extensive experiments and Section V concludes the paper.

II. BACKGROUND

A. Scale Invariant Heat Kernel Signature

Given an initial Dirac delta distribution defined on the
meshed surface at time t = 0, the heat diffusion process on
the meshed surface X can be described with the following
heat equation:

∂h(x, y, t)

∂t
= −Ph(x, y, t) (1)

where h(x, y, t) denotes the heat kernel on vertices x and y at
diffusion time t, P is the Laplace-Beltrami operator. With the
spectral decomposition theorem, the solution of Eq. (1), i.e.,
heat kernel h(x, y, t), can be obtained with the eigenfunctions
and eigenvectors of the Laplace-Beltrami operator P :

h(x, y, t) =
∑
i

e−λitφi(x)φi(y) (2)

where λi and φi are the ith eigenvalue and eigenfunction of
the Laplace-Beltrami operator P , respectively.

Based on the heat kernel, heat kernel signature (HKS) [12]
h(x, t), is defined as the diagonal value of the heat kernel of
vertex x at time t:

h(x, t) =
∑
i

e−λitφi(x)
2. (3)

HKS h(x, t) can be viewed as the remaining heat at vertex x
after time interval t. As a point signature, HKS can encode
the geometric information of the neighborhood of the shape.

The scale invariant heat kernel signature (SI-HKS) [13] is
the scale invariant version of HKS. By sampling the HKS
logarithmically with t = βτ , the discrete HKS h(x, t) can be
defined:

hτ = h(x, βτ ). (4)

The HKS of the scaled shape with the factor βs/2, h
′

τ , can be
represented as:

h
′

τ = β2hτ+s. (5)

The scale factor of the shape can be removed by the derivative
ḣτ of hτ :

ḣτ = log(hτ+1)− log(hτ ). (6)

Thus, we can obtain:

ḣ
′

τ = ḣτ+s. (7)

Denote the Fourier transform of ḣτ by H(ω). By taking the
Fourier transforms of ḣ

′

τ and ḣτ+s, one can see that the
absolute values of their Fourier transforms are equivalent.
Thus, SI-HKS g(x) on vertex x can be constructed by taking
the absolute value of H(ω) and sampling it at m frequencies:

g(x) = (|H(ω1)|, · · · , |H(ωm)|). (8)
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III. PROPOSED APPROACH

In this section, we detail the proposed deep non-linear
metric learning based shape retrieval method. Fig. 1 shows
the proposed shape retrieval framework with the deep metric
network. We first employ the LLC method to obtain the
encoding coefficient histograms to represent shapes. With the
encoding coefficient histograms as input to the developed deep
metric network, we then train the deep neural network to learn
a non-linear distance metric as the similarity for retrieval.

A. Shape Feature Description

Before we present the deep non-linear metric learning
method for 3D shape retrieval, in this subsection, we first
extract global 3D shape descriptors to describe 3D shapes. We
employ the SI-HKS as a local shape descriptor to describe the
neighborhood of each vertex on the shape. Based on the SI-
HKSs extracted from the shape, we employ LLC to encode
the vertices to represent the shape. Compared to the vector
quantization based shapegoogle descriptor [18] and the sparse
coding based descriptor [20], LLC has the low computation
complexity and low reconstruction error.

Suppose that there are N shapes and we use Si to index
the ith sample, i = 1, 2, · · · , N . For each vertex of the
shape, we extract an m-dimensional SI-HKS feature. Thus,
shape Si can be represented by the SI-HKS feature matrix
yi = [gi,1, gi,2, · · · , gi,T ], where gi,j is the m-dimensional
SI-HKS feature, j = 1, 2, · · · , T , and T is the number of the
vertices on shape Si. We then can construct a training dataset
Y = [y1,y2, · · · ,yN ], where yi is the SI-HKS feature matrix,
i = 1, 2, · · · , N . The dictionary D ∈ Rm×L is to be learned
from the training dataset Y via K-means clustering, where L is
the number of the atoms in the dictionary. The LLC method
[24] solves the following problem to encode each SI-HKS
feature over D:

minu

N∑
i=1

T∑
j=1

‖gi,j −Dui,j‖22 + λ‖di,j • ui,j‖22

s.t. 1Tui,j = 1,∀i, j

(9)

where ui,j is the encoding coefficient of the local shape
descriptor gi,j , u = [u1,1,u1,2, · · · ,uN,T ] is the encoding
coefficient matrix of Y over dictionary D, di,j is the distance
vector of gi,j and dictionary D, λ is the regularization
parameter, and • denotes the element-wise multiplication.
By performing the max pooling operator on the encoding
coefficient ui,j of shape Si, i = 1, 2, · · · , N , j = 1, 2, · · · , T ,
we can obtain an encoding coefficient histogram xi as a global
shape descriptor to describe shape Si. Fig. 2 shows the global
shape descriptor of the hand model with the LLC method.

B. Deep Metric Learning for Shape Retrieval

The traditional Mahalanobis distance metric learning
method [25] learns a matrix M ∈ Rd×d, where the distance
between xi and xj can be computed as

dM (xi,xj) =
√

(xi − xj)TM(xi − xj). (10)

Since M is a positive semi-definite matrix, it can be decom-
posed as

M = ψTψ. (11)

Thus, dM (xi,xj) can be rewritten as

dM (xi,xj) = ‖ψxi −ψxj‖2. (12)

From Eq. (12), one can see that the Mahalanobis distance
metric learning method can learn a linear transformation ψ
to map the samples to a linear feature space. However, the
learned linear transformation ψ cannot characterize the non-
linear manifold where the samples lie well, particularly when
there are usually large intra-class variations and small inter-
class variations with the samples. Recent advances [26–30]
on the non-linear metric learning demonstrate that learning a
non-linear distance metric can obtain better performance. For
example, in [27], the authors proposed to learn the non-linear
χ2 histogram distance for the histogram data instead of the
Mahalanobis distance.

Since 3D shapes are usually with the complex geometric
structural variations such as non-isometric transformations and
deformations, it is desirable to develop a non-linear distance
metric to characterize the manifold of 3D shapes well. Based
on the non-linearity of deep neural network, in this subsection,
we propose a deep non-linear metric learning method to
seek a non-linear transformation to map the global 3D shape
descriptor to a non-linear feature space for retrieval. We
construct a deep neural network to map the input encoding
coefficient histogram xi ∈ Rm×1 to the output zKi ∈ Rr×1,
where m and r are the dimensions of the input and output
of the deep neural network, K is the number of the layers,
i = 1, 2, · · · , N . In the constructed neural network, one neuron
in the layer k is connected to all neurons in the layer k + 1.
We denote the weight and bias connecting the layer k and the
layer k + 1 by W k and bk, respectively. The output of the
layer k + 1, zk+1

i , is:

zk+1
i = fk+1(z

k
i ) = σ(W kzki + b

k) (13)

where fk+1(z
k
i ) is the activation function in the layer k + 1,

zki is the neuron in the layer k for the input sample xi, σ(x)
is the sigmoid function σ(x) = 1

1+e−x . Thus, the non-linear
mapping function FK(xi) across K layers can be represented
as:

FK(xi) = fK(fK−1(· · · , f2(xi))). (14)

It is noted that for the input layer we assume that z1i = xi. The
weights and biases of all layers in the neural network areW ={
W 1,W 2, · · · ,WK−1} and b =

{
b1, b2, · · · , bK−1

}
, re-

spectively. Fig. 3 shows an example of the constructed metric
network.

For each pair of samples xi and xj , with the deep neural
network of K layers, the distance metric between the samples
xi and xj can be measured by the Euclidean distance between
the outputs zKi and zKj :

‖zKi − zKj ‖2 = ‖FK(xi)− FK(xj)‖2. (15)

From Eq. (15), one can see that with the non-linear mapping
FK the distance between samples xi and xj , ‖xi − xj‖2,
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SI-HKS	  

Input	  shapes	  from	  
the	  same	  class	  

LLC	  

Deep	  metric	  
network	  

SI-HKS	  

LLC	  

Input	  shapes	  from	  
different	  classes	  

W,	  b	  
Metric	  learning	  	  
	  	  	  	  	  model	  

Fig. 1. The proposed deep shape metric learning framework. For the input shapes, we employ the LLC method to encode the extracted SI-HKSs to form
the global 3D shape descriptors. The global shape descriptors of the input shapes from the same class and different classes are then fed into the deep metric
learning model so that the similarity between the pairs of shapes from the same class are as small as possible and the similarity between the pairs of shapes
from different classes are as large as possible.

Hand	  model	   SI-‐HKS	  map	   Global	  shape	  descriptor	  

Fig. 2. The global shape descriptor of the hand model. Different colors in the SI-HKS map of the hand model represent different SI-HKS values with the
same frequency. The global shape descriptor is obtained by performing the max-pooling operation on the LLC coefficients of the hand model.

Global	  shape	  
descriptor	  xi	  

zi2	     zi3	  
	  

W1,	  b1	   W2,	  b2	  

  Output	  ziK	  
	  

Fig. 3. The constructed metric network in our method. The input to the
network is the global 3D shape descriptor xi, z2

i and z3
i are the outputs of

the hidden layers, respectively, and the output of the network is zK
i . W and

b are the parameters to be learned in the network.

can be transformed to ‖FK(xi) − FK(xj)‖2. Compared to
‖xi−xj‖2 in the original space, the non-linear distance metric
‖FK(xi) − FK(xj)‖2 can characterize the manifold where
samples xi and xj lie better.

For each output zKi , our goal is to enforce that the similarity
between a pair of samples from the same class, ‖zKi −zKj ‖2,
j ∈ c(i), where c(i) denotes the class label of zKi , is as small
as possible while the similarity between a pairs of samples
from different classes, ‖zKi − zKj ‖2, j /∈ c(i), is as large as
possible. Let d+i,j be the loss between a pair of samples from
the same class and d−i,j be the loss between a pair of samples
from different classes:

d+i,j = ‖z
K
i − zKj ‖22

d−i,j = max(0, η − ‖zKi − zKj ‖22)
(16)

where η is a constant. The term d−i,j is a hinge loss function
to penalize the similarity between a pair of samples from
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different classes that is less than the threshold η. In this work,
we propose the following discriminative loss function:

J(W , b) =
α∑
ni

N∑
i=1

∑
j∈c(i)

1

2
d+i,j

+
1− α∑
mi

N∑
i=1

∑
j /∈c(i)

1

2
d−i,j +

λ

N

K−1∑
p=2

N∑
i=1

1

2
‖zpi − µ

p
i ‖

2
2

+
1

2
γ‖W ‖2F

(17)

where 0 ≤ α ≤ 1 controls the tradeoff between the similarities
of the pairs of the training samples from the same class and the
similarities of the pairs of the training samples from different
classes, ni is the number of the outputs of the same class label
to zKi , mi is the number of the outputs of the different class
labels to zKi , µpi is the mean of the outputs in layer p from the

same class c(i), i.e., µpi =

∑
j∈c(i)

zp
j

si
, si is the number of the

samples associated with c(i), p = 2, 3, · · · ,K−1, parameters
λ and γ are the positive scalars.

In the proposed metric learning model Eq. (17), the first two
terms minimize the within-class similarities for the outputs
of the deep neural network and simultaneously maximize the
between-class similarities so that the within-class variations
of the outputs from the same class are as small as possible
and the between-class variations of the outputs from the
different classes are as large as possible. In Eq. (17), the third
term encourages the neurons in the hidden layers from the
same class to their means. Since the training samples of the
same class share similarities in the original feature space, the
transformed features, i.e., the neurons zki in the hidden layers,
should also be similar. Moreover, by enforcing the neurons
zki in the hidden layers to approach to their means, we can
furthermore reduce the within-class variations of the outputs.
This can boost the discriminative power of the distance metrics
between the outputs of the neural network.

We first compute the output in the top layer of the network
with forward propagation. Then from the top layer to the first
layer, the partial derivatives of the objective function J(W , b)
can be computed layer by layer with the back-propagation
method [31, 32]. We denote 1

2d
+
i,j ,

1
2d
−
i,j and 1

2‖z
p
i −µ

p
i ‖22 by

J1(z
K
i , z

K
j ), J2(zKi , z

K
j ) and J3(z

p
i ,µ

p
i ), respectively. Thus,

the partial derivatives of the objective function J(W , b) with
respect to W k and bk can be computed as:

∂J(W , b)

∂W k
=

α∑
ni

N∑
i=1

∑
j∈c(i)

∂J1(z
K
i , z

K
j )

∂W k
+

1− α∑
mi

N∑
i=1

∑
j /∈c(i)

∂J2(z
K
i , z

K
j )

∂W k
+
λ

N

K−1∑
p=2

N∑
i=1

∂J3(z
p
i ,µ

p
i )

∂W k

+ γW k

(18)

∂J(W , b)

∂bk
=

α∑
ni

N∑
i=1

∑
j∈c(i)

∂J1(z
K
i , z

K
j )

∂bk
+

1− α∑
mi

N∑
i=1

∑
j /∈c(i)

∂J2(z
K
i , z

K
j )

∂bk
+
λ

N

K−1∑
p=2

N∑
i=1

∂J3(z
p
i ,µ

p
i )

∂bk
.

(19)
For layer k, let ak+1

i be the weighted vector in layer k+1,

ak+1
i = W kzki + bk, k = 1, 2, · · · ,K − 1.

∂J1(z
K
i ,z

K
j )

∂W k can
be re-written as the following formula:

∂J1(z
K
i , z

K
j )

∂W k
=
∂J1(z

K
i , z

K
j )

∂ak+1
i

(zki )
T

+
∂J1(z

K
i , z

K
j )

∂ak+1
j

(zkj )
T .

(20)

∂J2(z
K
i ,z

K
j )

∂W k can be re-written as:

∂J2(z
K
i , z

K
j )

∂W k
=

{
−∂J1(zK

i ,z
K
j )

∂W k , ‖zKi − zKj ‖22 < η

0, ‖zKi − zKj ‖22 ≥ η.
(21)

It is noted that when ‖zKi − zKj ‖22 = η we chose 0 as the
subgradient of J2(zKi , z

K
j ) with respect to W k.

Since µpi =

∑
j∈c(i)

zp
j

si
, where si denotes the number of the

samples associated with c(i), J3(z
p
i ,µ

p
i ) can be represented

as:

J3(z
p
i ,µ

p
i ) =

1

2
‖(1− 1

si
)zpi −

∑
j∈c(i),j 6=i

zpj

si
)‖22. (22)

Thus, ∂J3(z
p
i ,µ

p
i )

∂W k can be re-written as:

∂J3(z
p
i ,µ

p
i )

∂W k
=
∂J3(z

p
i ,µ

p
i )

∂ak+1
i

(zki )
T+

∑
j∈c(i),j 6=i

∂J3(z
p
i ,µ

p
i )

∂ak+1
j

(zkj )
T .

(23)

Let
∂J1(z

K
i ,z

K
j )

∂ak+1
i

,
∂J1(z

K
i ,z

K
j )

∂ak+1
j

,
∂J2(z

K
i ,z

K
j )

∂ak+1
i

,
∂J2(z

K
i ,z

K
j )

∂ak+1
j

,
∂J3(z

p
i ,µ

p
i )

∂ak+1
i

and
∂J3(z

p
j ,µ

p
j )

∂ak+1
j

be the errors δ1,Kk+1,i, δ
1,K
k+1,j , δ

2,K
k+1,i,

δ2,Kk+1,j , δ
3,p
k+1,i and δ3,pk+1,j , respectively. For k = K − 1, δ1,KK,i

and δ1,KK,j can be represented as:

δ1,KK,i =
∂(ZKi )T

∂aKi

∂J1(z
K
i , z

K
j )

∂ZKi
= (zKi − zKj ) • σ′(aKi )

δ1,KK,j =
∂(ZKj )T

∂aKj

∂J1(z
K
i , z

K
j )

∂ZKj
= (−zKi + zKj ) • σ′(aKj )

(24)
where σ′(aKi ) is the derivative of the activation function in the
output layer with respect to aKi and • denotes the element-wise
multiplication. Also, δ2,Kk+1,i and δ2,Kk+1,j can be represented as:

δ2,KK,i =

{
(−zKi + zKj ) • σ′(aKi ), ‖zKi − zKj ‖22 < η

0, ‖zKi − zKj ‖22 ≥ η

δ2,KK,j =

{
(zKi − zKj ) • σ′(aKj ), ‖zKi − zKj ‖22 < η

0, ‖zKi − zKj ‖22 ≥ η.

(25)



6

For layer k = K−2,K−3, · · · , 1, with the back-propagation
algorithm, δ1,Kk+1,i, δ

1,K
k+1,j , δ

2,K
k+1,i and δ2,Kk+1,j can be obtained

as:
δ1,Kk+1,i = ((W k+1)T δ1,Kk+2,i) • σ

′(ak+1
i )

δ1,Kk+1,j = ((W k+1)T δ1,Kk+2,j) • σ
′(ak+1

j )

δ2,Kk+1,i = ((W k+1)T δ2,Kk+2,i) • σ
′(ak+1

i )

δ2,Kk+1,j = ((W k+1)T δ2,Kk+2,j) • σ
′(ak+1

j ).

(26)

For δ3,pp,i and δ3,pp,j , we have:

δ3,pp,i = (1− 1

si
)(zpi − µ

p
i ) • σ

′(api )

δ3,pp,j =
1

si
(−zpi + µ

p
i ) • σ

′(apj ).
(27)

And for k = p − 2, p − 3, · · · , 1, δ3,pk+1,i and δ3,pk+1,j can be
represented:

δ3,pk+1,i = ((W k+1)T δ3,pk+2,i) • σ
′(ak+1

i )

δ3,pk+1,j = ((W k+1)T δ3,pk+2,j) • σ
′(ak+1

j ).
(28)

Thus,
∂J1(z

K
i ,z

K
j )

∂W k ,
∂J2(z

K
i ,z

K
j )

∂W k and ∂J3(z
p
i ,µ

p
i )

∂W k can be rep-
resented as:
∂J1(z

K
i , z

K
j )

∂W k
= δ1,Kk+1,i(z

k
i )
T + δ1,Kk+1,j(z

k
j )
T

∂J2(z
K
i , z

K
j )

∂W k
= δ2,Kk+1,i(z

k
i )
T + δ1,Kk+1,j(z

k
j )
T

∂J3(z
p
i ,µ

p
i )

∂W k
= δ3,pk+1,i(z

k
i )
T +

∑
j∈c(i),j 6=i

δ3,pk+1,j(z
k
j )
T .

(29)

Similarly, we can calculate
∂J1(z

K
i ,z

K
j )

∂bk
,

∂J2(z
K
i ,z

K
j )

∂bk
and

∂J3(z
p
i ,µ

p
i )

∂bk
as:

∂J1(z
K
i , z

K
j )

∂bk
= δ1,Kk+1,i + δ

1,K
k+1,j

∂J2(z
K
i , z

K
j )

∂bk
= δ2,Kk+1,i + δ

2,K
k+1,j

∂J3(z
p
i ,µ

p
i )

∂bk
= δ3,pk+1,i +

∑
j∈c(i),j 6=i

δ3,pk+1,j .

(30)

By substituting Eqs. (29) and (30) into Eqs. (18) and (19),
we can obtain the partial derivatives of the objective function
J(W , b) with respect to W k and bk, ∂J(W ,b)

∂W k and ∂J(W ,b)
∂bk

.
Then W k and bk can be updated with the gradient descent
algorithm. The training algorithm of our proposed deep metric
learning model is summarized in Algorithm 1. Fig. (4) plots
the curve of the value of the objective function versus the
iteration number on the McGill shape dataset. Once weight
W and bias b are learned, we can use Eq. (15) to compute
the distance metric for retrieval.

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate our proposed deep non-
linear metric learning based shape retrieval method, and then
compare it with the state-of-the-art 3D shape retrieval methods
on three benchmark datasets, i.e., McGill shape dataset [33],
SHREC’10 ShapeGoogle dataset [18] and SHREC’14 Human
dataset [34].
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Fig. 4. Convergence curve of the proposed objective function on the McGill
shape dataset.

Algorithm 1 Training algorithm of the proposed deep metric
learning model.
Input: training set xi; layer size K of the neural network;
weight α; regularization parameters λ and γ; threshold η;
learning rate θ.
Output: W and b.
For q = 1, 2, · · · , Q:

1) Compute the outputs of the neural network with forward
propagation for all input training samples xi;

2) For k = K − 1,K − 2, · · · , 1
Compute ∂J(W ,b)

∂W k with Eqs. (24-28), (29), (18);
Compute ∂J(W ,b)

∂bk
with Eqs. (24-28), (30), (19);

3) Update W k and bk for k = 1, 2, · · · ,K − 1:
W k =W k − θ ∂J(W ,b)

∂W k ;
bk = bk − θ ∂J(W ,b)

∂bk
.

Output W and b until the values of J(W , b) in adjacent iter-
ations are close enough or the maximum number of iterations
is reached.

A. Experimental Settings

We take 19 frequency components to compute the SI-HKS
to form a 19-dimensional feature vector for each vertex of the
shape. In the LLC method, the size of the learned dictionary
is 2000 and 5 atoms are selected to form the sub-dictionary
for each SI-HKS feature vector. Thus, for each shape, a 2000-
dimensional global 3D shape descriptor is used as input to
the deep neural network. In the proposed deep metric learning
model, the neural network with layers of 2000-1000-300-100
is used. Moreover, in Eq. (17), parameters α, λ and γ are set
to 0.6, 0.06 and 0.0001, respectively. The threshold η is set to
5.0.

In the McGill 3D shape dataset, there are 255 3D shapes
with complex geometric structural variations, which are from
10 classes. Since for each class there are large deformations
with the shapes, the shape retrieval task on this dataset is
challenging. Fig. 5 shows the example shapes with the large
deformations in the McGill shape dataset.

The SHREC’10 ShapeGoogle dataset contains 1184 syn-
thetic shapes, where 715 shapes from 13 classes are with
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(a) Octopuse models.

(b) Human models.

Fig. 5. The example shapes in the McGill 3D shape dataset.

the five simulated transformations, i.e., isometry, topology,
isometry+topology, partiality and triangulation. And there are
456 unrelated shapes in this dataset. All shapes are re-meshed
to have the same number of vertices and keep the same
vertex-wise correspondence. Fig. 6 shows the five kinds of
transformations in the SHREC’10 ShapeGoogle dataset.

The SHREC’14 Human dataset contains two sub-datasets,
including 300 synthetic human shapes and 400 scanned human
models. For each human shape model, there are 20 different
poses and 10 different poses in the two sub-datasets, respec-
tively. Since there are large pose changes with the human
shapes from the same class and similar geometric structures
with the shapes from different classes, the SHREC’14 Human
dataset is an extremely challenging one. Fig. 7 shows different
human shapes in the SHREC’14 Human dataset.

B. Evaluation of The Proposed Method

In order to demonstrate the effectiveness of the proposed
method, we compare the proposed method to the LLC based
3D shape descriptor without employing deep non-linear metric
learning on the McGill dataset.

1) Comparison to the LLC based shape descriptor: As
described in Section III. A, we employed LLC to encode
the SI-HKSs of vertices on the shape. The resulting encoding
coefficient histogram, i.e., the LLC based shape descriptor, is
used to represent the shape globally. In our proposed deep
metric learning based shape retrieval method, we use the LLC
based global 3D shape descriptor as input to the deep metric
network. With the deep metric network, the LLC based global
3D shape descriptor can be mapped to a non-linear feature
space. Thus, the distance between the outputs of the deep
metric network can be viewed as the non-linear transformation
of the distance between the original 3D shape descriptors. And

the within-class variations of the 3D shape descriptors are
minimized and the between-class variations of the 3D shape
descriptors are maximized. We denote our proposed shape
retrieval method with the deep non-linear metric learning
model by DNML. In order to demonstrate the effectiveness
of the proposed DNML method, we compare the proposed
DNML method to the LLC based 3D shape descriptor without
using the proposed deep metric learning model on the McGill
shape dataset.

For the LLC based 3D shape descriptor, since the size of
the learned dictionary is 2000, we form a 2000-dimensional
global shape descriptor to describe the shape. The Euclidean
distance between the 2000-dimensional shape descriptors is
used as the similarity for retrieval. In the proposed method,
we use the proposed neural network to train our deep metric
learning model. The Euclidean distance between the outputs
of the metric network is used for retrieval. Fig. 8 shows the
precision-recall curves for the LLC based shape descriptor and
the proposed method. As can be seen in this figure, compared
to the LLC based shape descriptor without applying metric
learning, the learned distance metric can significantly improve
the retrieval performance.

C. Comparison Evaluation

1) McGill shape dataset: In our proposed DNML method,
10 shapes per class are chosen as the training samples to
train the proposed deep metric network and the remaining
samples per class are used to test. We compare our proposed
method to the current shape retrieval methods: learning based
covariance descriptor [19], Graph-based method [35], the PCA
based VLAT method [36], the Hybrid BOW [37], the hybrid
2D/3D approach [38], the manifold ranking method [23].
Following the evaluation criteria in [19], Nearest Neighbor
(NN), the First Tier (FT), the Second Tier (ST) and the
Discounted Cumulative Gain (DCG) are used to evaluate
these methods. The retrieval performance of these methods
is illustrated in Table I. As can be seen in this table, in terms
of the evaluation criteria FT, ST and DCG, compared to these
methods [19, 23, 35–38], the proposed DNML method can
achieve the best performance.

Particularly, in [23], with the BOW method, the global
shape descriptor is learned from a set of SIFT features of
the rendered depth images. Then, the high dimensional space
of the global shape descriptors is represented by a Laplacian
graph and the manifold ranking based metric learning method
is employed to compute the distance for retrieval. Compared
to the manifold ranking based distance metric learning method
[23], our proposed DNML method can learn a deep non-linear
transform to obtain better retrieval performance.

2) SHREC’10 ShapeGoogle dataset: For the SHREC’10
ShapeGoogle dataset, we compare the proposed DNML
method to the vector quantization (VQ) based BOW method
[18], the unsupervised dictionary learning (UDL) method [20]
and the supervised dictionary learning (SDL) method [20].
Comparison results with the mean average precision (MAP)
are listed in Table II. From this table, one can see that
in the cases of the isometry, topology, isometry+topology
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Fig. 6. The five simulated transformations in the SHREC’10 ShapeGoogle dataset: isometry transform, isometry+topology transform, partiality transform,
topology transform and triangulation transform.

(a) Synthetic human models.

(b) Scanned human models.

Fig. 7. The example shapes in the SHREC’14 Human dataset.

Fig. 8. The precision-recall curve for the LLC based shape descriptor and
the proposed DNML method on the McGill shape dataset.

TABLE I
RETRIEVAL RESULTS ON THE MCGILL DATASET.

Methods NN FT ST DCG
Covariance descriptor [19] 0.977 0.732 0.818 0.937
Graph-based method [35] 0.976 0.741 0.911 0.933
PCA based VLAT [36] 0.969 0.658 0.781 0.894

Hybrid BOW [37] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [38] 0.925 0.557 0.698 0.850

Manifold ranking [23] - 0.761 - -
Proposed DNML 0.962 0.906 0.969 0.967

and partiality transformations, our proposed DNML method
is comparable or superior to the vector quantization (VQ)
based BOW method [18], the unsupervised dictionary learning
(UDL) method [20] and the supervised dictionary learning
(SDL) method [20]. For example, in the cases of isom-
etry+topology and partiality transformations, our proposed
DNML method can obtain the accuracies of 0.979 and 0.983
while the SDL method [20] can obtain the accuracies of
0.956 and 0.951. However, in the case of the triangulation
transformation, the accuracy of our proposed DNML method
is slightly lower than those of the three methods.

It is noted that in the VQ based BOW method [18], the
authors employed the similarity sensitive hashing (SSH) to
learn the distance metric between the BOW features. The
SSH based metric learning can be viewed to learn a linear
distance metric between the shape descriptors for retrieval.
Since there are the large non-rigid deformations with the
shapes, in the proposed DNML method, we employ the deep
neural network to non-linearly map the 3D shape descriptors
to a non-linear feature space. Compared to the learned linear
distance metric, the learned non-linear distance metric in our
proposed DNML method can characterize the manifold of
the deformable shapes better. Therefore, the proposed DNML
method can obtain better performance in the most cases. As
can be seen in Table II, in the cases of the isometry+topology
and partiality transformations, the proposed DNML method
can obtain the accuracies of 0.979 and 0.983 while the VQ
based BOW method [18] can obtain the accuracies of 0.933
and 0.947, respectively.

3) SHREC’14 Human dataset: We compare the proposed
DNML method to the following shape retrieval methods:
Histogram of area projection transform (HAPT) [39], intrinsic
pyramid matching (ISPM) [40], reduced Bi-harmonic distance
matrix (RBiHDM) [41], deep belief network (DBN) [34],
the standard vector quantization (VQ) based BOW method
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TABLE II
RETRIEVAL RESULTS ON THE SHREC’10 SHAPEGOOGLE DATASET.

Transformation VQ [18] UDL [20] SDL [20] Proposed DNML
Isometry 0.988 0.977 0.994 1.000
Topology 1.000 1.000 1.000 1.000

Isometry+Topology 0.933 0.934 0.956 0.979
Partiality 0.947 0.948 0.951 0.983

Triangulation 0.954 0.950 0.955 0.943

[18], the unsupervised dictionary learning (UDL) method [20]
and the supervised dictionary learning (SDL) method [20].
For the synthetic and scanned sub-datasets, 10 shapes and 5
shapes per class are used to train the proposed deep non-linear
metric network and the other shapes per class are used for
testing, respectively. The mean average precision is also used
to evaluate these methods. The experimental results are listed
in Table III. As can be seen in this table, for the synthetic sub-
dataset, in comparison with the methods [18, 20, 34, 39–41],
our proposed DNML method can obtain better performance.
Nonetheless, for the scanned sub-dataset, the mean average
precision of our proposed DNML method is slightly higher
than that of the SDL method [20].

TABLE III
RETRIEVAL RESULTS ON THE SHREC’14 HUMAN DATASET.

Method Synthetic model Scanned model
HAPT[39] 0.817 0.637
ISPM[40] 0.92 0.258

RBiHDM[41] 0.642 0.640
DBN[34] 0.842 0.304
VQ [18] 0.813 0.514

UDL [20] 0.842 0.523
SDL [20] 0.95.1 0.791

Proposed DNML 0.973 0.801

D. Computational Time Evaluation

For each shape with T vertices, the computational com-
plexity of SI-HKS is O(T 3), dominated by the computation
of the eigenvectors and eigenvalues of the Laplace-Beltrami
operator. The computational complexity of the global shape
feature representation with K-means clustering and LLC cod-
ing is O(ImLN) and O(L + L2

a), where I is the iteration
number of K-means clustering, m is the dimension of SI-
HKS, N is the number of training samples, L is the size
of the learned dictionary and La is the number of selected
atoms. In the stage of training the proposed deep metric
learning model, the computational complexity of updating W
is O(Q

∑K−1
k=1 lklk+1) while the computational complexity of

updating b is O(Q
∑K−1
k=2 lklk+1), where Q is the iteration

number of the back-propagation algorithm, lk is the size of
the kth layer of the neural network. In the testing stage,
the computational complexity of forming the deep shape
descriptor is O(

∑K−1
k=1 lklk+1).

The proposed DNML method was implemented in Matlab
and tested on a Dell workstation with an Intel Xeon E5 CPU
and 32 GB RAM. We evaluate computational time of the
proposed DNML method on the McGill shape dataset. For
constructing the training dataset, we choose 10 shapes for each
class as the training samples. The computation of SI-HKS, the

global shape descriptor and training the proposed deep metric
network takes 6.5 min, 11 min and 3.5 min, respectively. Thus,
the total training time on the 100 training samples is about 21
min. For testing, the average computational time of the learned
non-linear distance metric between a pair of samples is about
2.1 sec.

V. CONCLUSIONS

In this paper, we proposed a deep non-linear metric learning
method for 3D shape retrieval. We developed a metric network
by minimizing a discriminative loss function that can enforce
the similarity between a pair of samples from the same class
to be small, the similarity between a pair of samples from
different classes to be large and the neurons in the hidden
layers to approach to their means. Based on the proposed
metric network, we can non-linearly map the global 3D shape
descriptors to a non-linear feature space. The distance between
the outputs of the metric network is used as the similarity
for retrieval. The proposed deep non-linear metric learning
method demonstrates its retrieval performance on the McGill,
SHREC’10 ShapeGoogle and SHREC’14 Human datasets.
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