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DeepShape: Deep-Learned Shape Descriptor for 3D
Shape Retrieval

Jin Xie, Guoxian Dai, Fan Zhu, Edward K.Wong, and Yi Fang

Abstract—Complex geometric variations of 3D models usually
pose great challenges in 3D shape matching and retrieval. In this
paper, we propose a novel 3D shape feature learning method to
extract high-level shape features that are insensitive to geometric
deformations of shapes. Our method uses a discriminative deep
auto-encoder to learn deformation-invariant shape features. First,
a multiscale shape distribution is computed and used as input
to the auto-encoder. We then impose the Fisher discrimination
criterion on the neurons in the hidden layer to develop a
deep discriminative auto-encoder. Finally, the outputs from the
hidden layers of the discriminative auto-encoders at different
scales are concatenated to form the shape descriptor. The
proposed method is evaluated on four benchmark datasets that
contain 3D models with large geometric variations: McGill,
SHREC’10 ShapeGoogle, SHREC’14 Human and SHREC’14
Large Scale Comprehensive Retrieval Track Benchmark datasets.
Experimental results on the benchmark datasets demonstrate the
effectiveness of the proposed method for 3D shape retrieval.

Index Terms—3D shape retrieval, heat kernel signature, heat
diffusion, auto-encoder, Fisher discrimination criterion.

I. INTRODUCTION

NOWADAYS with the development of 3D acquisition
and printing technology there is an explosive growth of

3D meshed surface models. Due to the data-richness of 3D
models, shape retrieval for 3D model searching, understanding
and analyzing has received more and more attention. Using a
shape as a query, the shape retrieval algorithm aims to find
similar shapes. The performance of a shape retrieval algorithm
mainly relies on a shape descriptor that can effectively capture
the distinctive properties of shape. It is preferable that a shape
descriptor should be deformation-insensitive and invariant to
different classes of transformations. The shape descriptor
should also be insensitive to both topological and numerical
noise. Once the shape descriptor is formed, the similarity
between two shapes can be determined by comparing their
descriptors.

Shape descriptors for shape matching and retrieval have
been extensively studied in the geometry community. In the
past decades, plenty of shape descriptors have been proposed;
these include the D2 shape distribution [1], statistical moments
of 3D model [2], Fourier descriptor [3, 4], light field descriptor
[5] and eigenvalue descriptor [6], etc. Although these shape
descriptors can represent shapes effectively, they are either
sensitive to non-rigid transformations or topological changes.
To be invariant to isometric transformations, local geometric
features, such as spin images [7], shape context [8] and mesh
HOG [9] are extracted to represent the shape. However, these
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features are sensitive to local geometric noise and they do not
capture the global structure of the shape very well.

Apart from the above earlier shape descriptors, another
popular approach to shape retrieval uses the diffusion-based
point signatures [10–12]. Based on the Laplace-Beltrami op-
erator, the global point signature (GPS) [12] was proposed
to represent shapes. Since the eigenfunctions of the Laplace-
Beltrami operator are able to robustly characterize the points
on a meshed surface, each vertex is represented by a high-
dimensional vector (called GPS) of the scaled eigenfunctions
of the Laplace-Beltrami operator evaluated at the vertex.
Another widely used shape signature is heat kernel signature
(HKS) [10], where the diagonal of the heat kernel is used
as a local descriptor to represent shapes. HKS is invariant to
isometric deformations and insensitive to small perturbations
on the surface. Both GPS and HKS are point signatures that
characterize vertices on the meshed surface by vectors.

Once the aforementioned point signatures are formed, the
global shape descriptors can be learned from a set of training
shapes for shape retrieval. For example, in [13], based on
the bag-of-features (BOF) paradigm, a dictionary of words
is learned by applying K-means clustering to a set of HKSs.
A histogram of pairs of spatially-close words over the learned
dictionary is then formed as the shape descriptor for retrieval.
Using K-means clustering, Lavouè et al. [14] combined the
standard and spatial BoF descriptors for 3D shape retrieval.
EINagh et al. proposed the compact HKS-based BoF de-
scriptor, i.e., CompactBoFHKS [15]. In the CompactBoFHKS
method, feature point detection is employed to select critical
points. For each critical point, certain scales of the HKS are
selected to form a compact feature vector to describe it. The
BoF method is then applied to the feature vectors to learn
a shape descriptor for retrieval. Litman et al. [16] employed
sparse coding to learn the dictionary of words instead of K-
means clustering. The histogram of encoded representation
coefficients over the learned dictionary is used to represent
shapes for retrieval. Moreover, in order to obtain discrimina-
tive representation coefficients, a class-specific dictionary is
constructed using supervised learning.

Recently, due to the success of deep neural networks in
different application domains, deep learning based 3D shape
features have been proposed for 3D shape analysis. Wu et
al. [17] proposed to represent 3D shapes as a probability
distribution of binary variables on a 3D voxel grid. Then
a convolutional deep belief network is developed to learn
the joint probabilistic distribution of the voxel data and the
category label. Boscaini et al. [18] employed the windowed
Fourier transform to points on the meshed surface to form a
local frequency representation. These local frequency repre-
sentations are then passed through a bank of filters to form
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a deep representation for 3D shapes. The filter coefficients
can be learned by using a task-specific cost function. By
constructing a geodesic convolution operator, Masci et al. [19]
generalized the convolutional neural network to non-Euclidean
manifolds for 3D shape retrieval and correspondence.

In this paper, we propose a novel discriminative auto-
encoder to learn a shape descriptor for shape retrieval. In the
proposed discriminative auto-encoder, we impose the Fisher
discrimination criterion on the hidden layer so that the neurons
in the hidden layer have small within-class scatter but large
between-class scatter. To effectively represent shape, we use
a multiscale shape distribution as input to the discriminative
auto-encoder. We then train a discriminative auto-encoder at
each scale and concatenate the outputs of the hidden layers
from different scales as the shape descriptor. The proposed
shape descriptor is tested on several benchmark shape datasets
and shows promising performance.

The rest of the paper is organized as follows. In Section
II, we briefly introduce the HKS and auto-encoder. In Section
III, we present the discriminative auto-encoder based shape
descriptor. We describe our experimental results in Section IV
and conclude the paper in Section V.

II. BACKGROUND

A. Heat Kernel Signature

Provided that there is an initial Dirac delta distribution on
the meshed surface X at t = 0, the heat diffusion process on
X can be described with the following heat equation:

∂Ht

∂t
= −ΨHt (1)

where Ht denotes the heat kernel, Ψ is the Laplace-Beltrami
operator and t is the diffusion time. The heat kernel Ht(g0, g1)
measures the heat flow across the meshed surface, which is
the amount of heat passing from vertex g0 to vertex g1 within
a certain amount of time. The solution of Eq. (1) can be
obtained:

Ht = exp(−tΨ). (2)

With the spectral theorem, the heat kernel can be expressed
as:

Ht(g0, g1) =
∑
i

e−λitφi(g0)φi(g1) (3)

where λi is the ith eigenvalue of the Laplacian-Beltrami
operator and φi is the ith eigenfunction.

The heat kernel signature (HKS) [10] of vertex g0 at time
t can be defined as the diagonal of the heat kernel of vertex
g0 taken at time t:

Ht(g0, g0) =
∑
i

e−λitφi(g0)2. (4)

The HKS Ht(g0, g0), is a point signature that can capture
the neighborhood information at point g0 and scale t, and is
isometrically invariant.

B. Auto-encoder

A deep auto-encoder [20, 21] consists of two parts, i.e.,
encoder and decoder. The encoder, denoted by F , maps the
input h ∈ Rd×1 to the hidden layer, denoted by z ∈ Rr×1,
where d is the dimension of the input and r is the number
of neurons in the hidden layer. In the deep auto-encoder, a
neuron in layer l is connected to all neurons in layer l + 1.
We denote the weight and bias connecting layers l and l + 1
by W l and bl, respectively. A non-linear activation function,
such as the sigmoid function σ(h) = 1

1+e−h or tanh function
σ(h) = eh−e−h

eh+e−h , is usually used to produce the output at each
neuron. The output at layer l + 1 can be represented as

fl+1(al) = σ(W lal + bl) (5)

where fl+1(al) is the activation function for layer l + 1 and
al is the neurons in layer l. Thus, the encoder F (h) can be
represented as

F (h) = fk(fk−1(· · · , f2(h))). (6)

The decoder, denoted by G, maps the hidden layer repre-
sentation z back to the input h. It is defined as

h = fL(fL−1(· · · , fk+1(z))) (7)

where L is the layer number of the auto-encoder. The matrices
W and b are the weights and biases of the auto-encoder with
W =

{
W 1,W 2, · · · ,WL−1} and b =

{
b1, b2, · · · , bL−1

}
.

To optimize parameters W and b, the standard auto-encoder
minimizes the following cost function:

< Ŵ , b̂ >=argminW ,b
1

2

M∑
i=1

‖hi −G(F (hi))‖22

+
1

2
λ

L−1∑
l=1

‖W ‖2F

(8)

where hi represents the ith training sample, M represents
the total number of training samples, and parameter λ is a
positive scalar. In Eq. (8), the first term is the reconstruction
error and the second term is the regularization term that
prevents overfitting. An efficient optimization method can be
implemented by the restricted Boltzman machine and back-
propagation framework. The reader can refer to [20] for more
details.

III. PROPOSED APPROACH

In this section, we describe our proposed discriminative
auto-encoder based shape descriptor. As depicted in Fig. 1,
our proposed framework comprises three components, namely,
multiscale shape distribution, discriminative auto-encoder and
3D shape descriptor. In the multiscale shape distribution
component, the distributions of heat kernel signatures of shape
at different scales are extracted as low-level features and used
as input to the discriminative auto-encoder. In the second
component, we train a discriminative auto-encoder to learn
high-level shape features (embedded in the hidden layer of the
discriminative auto-encoder). Finally, the 3D shape descriptor
is formed by concatenating the outputs from the hidden layers
of the discriminative auto-encoders at different scales.
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Fig. 1. The framework of the proposed discriminative auto-encoder based shape descriptor.

A. Multiscale Shape Distribution
Shape distribution [22] refers to a probabilistic distribution

sampled from a shape function describing the 3D model.
In this work, we use the HKS as the shape function. The
HKS describes the amount of heat that remains at the vertex
within a time interval. It is highly related to the curvature of
the meshed surface. Therefore, the HKS can characterize the
intrinsic geometric structures of neighborhoods of the shape
well. It has attractive properties that include invariance to the
isometric transformation, robustness against other geometric
changes, and multiscale representation with diffusion time
[10]. Compared to the voxelization method [17] to represent
3D model, the HKS does not need shape alignment. And
unlike the parameterized local surface patch method in [18],
it does not need to calculate the complex patch operator
by constructing the local geodesic polar coordinates on the
surface.

The shape distribution can be formed by using histogram
to estimate the probabilistic distribution of the HKSs of the
vertices on the shape. Suppose there are C shape classes, each
of which has O samples. We use yi,j to index the jth sample
of the ith shape class. For each shape yi,j , we extract HKS fea-
ture Si,j ∈ RN×T , where Si,j = [S1

i,j ,S
2
i,j , · · · ,STi,j ], Sti,j

is the HKS vector at the tth scale to describe N vertices on
shape yi,j , t = 1, 2, · · · , T , and T is the number of scales. For
scale t, we calculate the histogram of Sti,j to form the shape
distribution hti,j . By considering probabilistic distributions of
shape functions derived from the HKS at different scales, a
multiscale shape distribution can be obtained. In addition, we
normalize the shape distribution, which is centralized by the
mean and variance of the shape distributions over all training
samples from C classes, namely,

hti,j =
hti,j − ht

vt
(9)

where ht and vt are the mean and variance of all training
shape distributions hti,j .

Fig. 2 shows the multiscale shape distributions of the
Centaur and Human models with different poses. From this

figure, we can see that the multiscale shape distributions are
different for the Centaur and Human shapes. Also, the three
centaur models with isometric geometric transformations have
consistent multiscale shape distributions. This demonstrates
the invariance of the multiscale shape distribution to isometric
transformations. For the three human models with structural
variations, their multiscale shape distributions can capture their
common geometric characteristics despite the inconsistency in
their detailed descriptions.

B. Discriminative Auto-encoder

In this subsection, we propose a discriminative auto-encoder
to extract high-level features for 3D shape retrieval. To boost
the discriminative power of the hidden layer features, we
impose a Fisher discrimination criterion [23] on them. Given
the shape distribution input xti of shape class i at scale t,
xti = [hti,1,h

t
i,2, · · · ,hti,O], we denote by zt the features

in the hidden layer of the auto-encoder. We can write zt

as zt = [zt1, z
t
2, · · · , ztC ], where zti = [zti,1, z

t
i,2, · · · , zti,O],

zti,j is the hidden layer feature of the jth sample from class
i, for i = 1, 2, · · · , C and j = 1, 2, · · · , O. Using the
Fisher discrimination criterion, discrimination is achieved by
minimizing the within-class scatter of zt, denoted by Sw(zt),
and maximizing the between-class scatter of zt, denoted by
Sb(z

t). Sw(zt) and Sb(zt) are defined as:

Sw(zt) =

C∑
i=1

∑
zt
i,j∈i

(zti,j −mt
i)(z

t
i,j −mt

i)
T

Sb(z
t) =

C∑
i=1

ni(m
t
i −mt)(mt

i −mt)T

(10)

where mt
i and mt are the mean vectors of zti and zt, respec-

tively, and ni is the number of samples from class i. We define
the discriminative regularization term tr(Sw(zt))−tr(Sb(zt))
and incorporate it into the objective function of the discrimi-
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Fig. 2. The multiscale shape distributions of the Centaur and Human models. The left two columns show the Centaur models with isometric transformations and
the corresponding multiscale shape distributions. The right two columns show the Human models with non-isometric structural variations and the corresponding
multiscale shape distributions, respectively.

native auto-encoder:

J(W t, bt) =

C∑
i=1

1

2
‖xti −G(F (xti))‖2F

+
1

2
λ‖W t‖2F +

1

2
γ(tr(Sw(zt))− tr(Sb(zt))).

(11)

For shape distribution hti,j , we define the following func-
tions:

J0(W t, bt,hti,j) =
1

2
‖hti,j −G(F (hti,j))‖22 (12)

L0(zti,j) =
1

2
tr((zti,j −mt

i)(z
t
i,j −mt

i)
T )

− 1

2
tr((mt

i −mt)(mt
i −mt)T ).

(13)

We adopt the back-propagation method to optimize the objec-
tive function Eq. (11). The partial derivatives of the overall
cost function J(W t, bt) can be computed as:

∂J(W t, bt)

∂W l,t
=

C∑
i=1

∑
ht

i,j∈i

∂J0(W t, bt,hti,j)

∂W l,t
+ λW l,t

+ γ

C∑
i=1

∑
zt
i,j∈i

∂L0(zti,j)

∂W l,t

(14)

∂J(W t, bt)

∂bl,t
=

C∑
i=1

∑
ht

i,j∈i

∂J0(W t, bt,hti,j)

∂bl,t

+ γ

C∑
i=1

∑
zt
i,j∈i

∂L0(zti,j)

∂bl,t
.

(15)

We denote by δL,ti,j the error of the output layer L for the
input sample hti,j in the auto-encoder. For the output layer L,
we have:

δL,ti,j = −(hti,j − a
L,t
i,j ) • σ′(uL,ti,j ) (16)

where aL,ti,j is the activation of the output layer for the input
sample hti,j , u

L,t
i,j is the weighted sum of the outputs of layer

L−1 to the output layer, σ′(uL,ti,j ) is the derivative of the acti-
vation function in the output layer and • denotes the element-
wise multiplication. For layers l = L − 1, L − 2, · · · , 2, the
error δl,ti,j can be recursively obtained by the back-propagation
method using the following equation:

δl,ti,j = ((W l,t)T δl+1,t
i,j ) • σ′(ul,ti,j). (17)

The partial derivatives of the function J0(W t, bt,hti,j), can
be computed as :

∂J0(W t, bt,hti,j)

∂W l,t
= δl+1,t

i,j (al,ti,j)
T

∂J0(W t, bt,hti,j)

∂bl,t
= δl+1,t

i,j .

(18)

Since zti,j = σ(uk,ti,j ) = σ(W k−1,tak−1,ti,j + bk−1,t), for

l > k − 1,
∂L0(z

t
i,j)

∂W l,t = 0 and
∂L0(z

t
i,j)

∂bl,t = 0. For l ≤ k − 1,
∂L0(z

t
i,j)

∂W l,t
p,q

and
∂L0(z

t
i,j)

∂bl,tp
can be computed as:

∂L0(zti,j)

∂W l,t
p,q

=
∂zti,j,p

∂W l,t
p,q

∂L0(zti,j)

∂zti,j,p
= al,ti,j,qσ

′(ul+1,t
i,j )p

∂L0(zti,j)

∂zti,j,p
∂L0(zti,j)

∂bl,tp
= σ′(ul+1,t

i,j )p
∂L0(zti,j)

∂zti,j,p
(19)

where W l,t
p,q is the weight associated with the connection

between unit p in layer l and unit q in layer l + 1, bl,tp is
the bias associated with unit p in layer l, al,ti,j,q is the pth
component of al,ti,j and zti,j,p is the pth component of zti,j .
The partial derivative of L0(zti,j) with respect to zti,j,p can be
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Algorithm 1 Training algorithm of our discriminative auto-encoder.

Input: training set xti; the layer size of the auto-encoder; λ;
γ; learning rate β.
Output: W t and bt.
Set ∆W l,t = 0 and ∆bl,t = 0 for all l.
For all hti,j :

1) Compute
∂J0(W

t,bt,ht
i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and
∂J0(W

t,bt,ht
i,j)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t : l > k − 1, compute
them with Eq. (18); l ≤ k − 1, compute them with Eqs.
(21) and (22).

2) Set ∆W l,t to ∆W l,t +
∂J0(W

t,bt,ht
i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t .

3) Set ∆bl,t to ∆bl,t +
∂J0(W

t,bt,ht
i,j)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t .
Update W l,t and bl,t: W l,t = W l,t − β(∆W l,t + λW l,t),
bl,t = bl,t − β∆bl,t.
Output W l,t and bl,t until the values of J(W t, bt) in succes-
sive iterations are close enough or the maximum number of
iterations is reached.

obtained as:

∂L0(zti,j)

∂zti,j,p
= (1− 1

ni
)(zti,j,p −mt

i,p)

− (
1

ni
− 1∑

ni
)(mt

i,p −mt
p)

(20)

where mt
i,p and mt

p are the pth components of mt
i and mt,

respectively.
Therefore, for l > k − 1,

∂J0(W
t,bt,ht

i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and
∂J0(W

t,bt,ht
i,j)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t can be obtained by Eq. (18). For

l ≤ k − 1,
∂J0(W

t,bt,ht
i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and
∂J0(W

t,bt,ht
i,j)

∂bl,t +

γ
∂L0(z

t
i,j)

∂bl,t can be computed as:

∂J0(W t, bt,hti,j)

∂W l,t
+ γ

∂L0(zti,j)

∂W l,t
= (δl+1,t

i,j + γ((1− 1

ni
)

(zti,j −mt
i)− (

1

ni
− 1∑

ni
)(mt

i −mt)) • σ′(ul+1,t
i,j ))(al,ti,j)

T

(21)
∂J0(W t, bt,hti,j)

∂bl,t
+ γ

∂L0(zti,j)

∂bl,t
= δl+1,t

i,j + γ((1− 1

ni
)

(zti,j −mt
i)− (

1

ni
− 1∑

ni
)(mt

i −mt)) • σ′(ul+1,t
i,j ).

(22)
Once the partial derivatives of the objective function

J(W t, bt) with respect to W t and bt are computed, we can
employ the conjugate gradient method to obtain W t and bt.
The training algorithm of our proposed discriminative auto-
encoder is summarized in Algorithm 1.

C. 3D Shape Descriptor

We use the outputs from the hidden layer of the discrimina-
tive auto-encoder to form the shape descriptor. In order to char-
acterize the intrinsic structure of the shape effectively, we train
a discriminative auto-encoder at each scale by using a set of
training shape distributions, xt1,x

t
2, · · · ,xtC , t = 1, 2, · · · , T .

After training, we concatenate the outputs from the hidden

layers at all scales to form the shape descriptor. Denote the
tth encoder of the multiple discriminative auto-encoders by
F t. The shape descriptor of the jth shape from class i, αi,j ,
can be represented as:

αi,j = [F 1(h1
i,j);F

2(h2
i,j); · · · ;FT (hTi,j)]. (23)

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed shape de-
scriptor and compare it to state-of-the-art methods on four
benchmark datasets: McGill shape dataset [24], SHREC’10
ShapeGoogle dataset [13], SHREC’14 Human dataset [25]
and SHREC’14 Large Scale Comprehensive Retrieval Track
Benchmark (SHREC’14 LSCRTB) dataset [26].

A. Experimental Settings

We set time unit τ = 0.01 and take 101 sampled time
values (i.e., 101 scales) for the computation of HKS. For
multiscale shape distribution, 128 bins are used to form the
shape distribution at each scale, which results in a 128-
dimensional input for the discriminative auto-encoder. We train
an auto-encoder with an encoder of layer size 128-1000-500-
250-30 and a symmetric decoder of the same layer size. In
Eq. (11), λ and γ are set to 0.001, respectively.

In the McGill 3D shape dataset [24], there are 255 3D
meshes with significant part articulations. They come from
10 classes: ant, crab, spectacle, hand, human, octopus, plier,
snake, spider, and teddy-bear. Each class contains 3D shapes
with large pose changes, which makes the McGill 3D shape
dataset very challenging. Fig. 3 shows examples from the
McGill shape dataset.

The SHREC’10 ShapeGoogle dataset [13] contains 1184
synthetic shapes, including 715 shapes from 13 classes gen-
erated by five simulated transformations: isometry, topology,
isometry+topology, partiality and triangulation, and 456 unre-
lated shapes. Following the setting in [16], to make the dataset
more challenging, all shapes are re-meshed to have the same
vertices and samples having the same attribute are grouped into
the same class. Fig. 4 shows examples from the ShapeGoogle
dataset.

The SHREC’14 Human dataset [25] contains two subsets.
The first sub-dataset contains 15 synthetic human models
and each model has 20 different poses. The second subset
consists of 40 scanned human models, with 10 different poses
for each model. Following the setting in [16], all human
shapes are re-scaled to 4500 triangles. The SHREC’14 Human
dataset is an extremely challenging one because all human
shapes share similar geometry information. Different poses
and similar geometric structures will lead to large within-
class variations and small inter-class variations. Fig. 5 shows
two human shapes with different poses from the SHREC’14
Human dataset.

The SHREC’14 LSCRTB dataset [26] has 8987 3D shape
models from 171 classes. It is a large-scale 3D shape dataset
where the shapes are from 8 different 3D shape datasets,
including the generic models, articulated models, architecture
models and CAD models, etc. The average number of models
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Fig. 3. Example shapes in the McGill dataset. The left three figures show the Crab shapes while the right three figures show the Hand shapes with non-rigid
transformations.

Fig. 4. Example shapes with different transformations in the SHREC’10 ShapeGoogle dataset. From left to right, the Centaur shapes with isometry,
isometry+topology, topology, partiality and triangulation transformations are shown.

Fig. 5. Two human shapes with different poses in the SHREC’14 Human dataset. The left three figures show shapes with pose changes from one person
while the right three figures show shapes with different poses from another person.

in each class is 53. Most of the shapes are generic models
such as bicycle, book, armchair. Moreover, the generic shape
models of the same class are not deformed by a template. For
example, as shown in Fig. 6, for the armchair model, there are
different kinds of armchairs in this dataset.

B. Evaluation of The Proposed 3D Shape Descriptor

We evaluate the effectiveness of our proposed shape de-
scriptor on the McGill benchmark dataset [24]. To compare
performance, we also generate test results using the multiscale
shape distribution descriptor (without auto-encoder) and using
the auto-encoder but without the Fisher regularization term.
In addition, we investigate the performance of the proposed
shape descriptor in terms of robustness to deformations and
noise.

1) Comparison to Multiscale Shape Distribution Descrip-
tor: In our proposed method, we use the multiscale shape
distribution as input to the discriminative auto-encoder. Learn-
ing deep features from the multiscale shape distribution with

the discriminative auto-encoder can be viewed as extracting
high-level features from the multiscale shape distribution. To
reduce the dimension of the multiscale shape distribution from
101 scales, we concatenate the shape distributions from 26
diffusion time samples to form a 3328-dimensional feature
vector. For a fair comparison, we use 26 discriminative auto-
encoders to form the shape descriptor. With a hidden layer
size of 30 for each auto-encoder, a 780-dimensional shape
descriptor is formed to represent the shape. Fig. 7 shows the
precision-recall curves for the multiscale shape distribution
descriptor and the proposed shape descriptor. As can be seen
in this figure, the proposed shape descriptor with a lower
dimension has significantly better retrieval performance.

2) Comparison to Standard Auto-encoder: In order to
demonstrate the effectiveness of the proposed discriminative
auto-encoder, we also compare the proposed shape descriptor
to the shape descriptor obtained by employing a standard auto-
encoder without the Fisher discrimination term. We concate-
nate 101 auto-encoders to form both shape descriptors of the
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Fig. 6. Different kinds of armchair shapes in the SHREC’14 LSCRTB dataset.
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Fig. 7. The precision-recall curves for the multiscale shape distribution
descriptor and the proposed shape descriptor on the McGill shape dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

The proposed shape descriptor
The shape descriptor with the standard auto−encoder

Fig. 8. The precision-recall curves for the shape descriptor using standard
auto-encoder (without the Fisher discrimination criterion) and the proposed
shape descriptor on the McGill dataset.

same dimension. Fig. 8 shows the precision-recall curves for
the two shape descriptors. One can see that the proposed shape
descriptor with the discriminative auto-encoder performs better
than the shape descriptor obtained by using the standard auto-
encoder without the Fisher discrimination term. It implies that
by imposing the Fisher discrimination constraint on the hidden
layers the learned shape descriptor can reduce within-class
variations and increase between-class variations, therefore
improving the retrieval performance.

3) Robustness to Deformations and Noise: A good shape
descriptor should be robust to pose changes and noise corrup-
tions. We evaluate robustness of the proposed shape descriptor
against pose changes and noise. We choose Teddy-bear and

Human models with different poses from the McGill dataset
[24] in our experiment. The shape descriptors of the deformed
shapes are illustrated in Fig. 9. From the figure, we can see
that the descriptors for the model with different poses are
very similar. On the other hand, the shape descriptors for
different models are distinctive. This shows that the hidden-
layer features in the proposed discriminative auto-encoder
have small within-class variations but large between-class
variations.

By perturbing the vertices of the mesh with various levels
of numerical noise, we also demonstrate that the proposed
shape descriptor is robust to noise. The noise, represented
as a 3-dimensional vector, is randomly generated from a
multivariate normal distribution, N3(µ, R×Σ), where µ is the
3-dimensional mean vector of the coordinates of the vertices,
Σ is the 3×3 covariance matrix of the vertices, and R denotes
the ratio between the variance of noise and the variance of the
coordinates of the vertices.

Fig. 10 shows the clean Crab and Hand models, and their
noisy models. In (a) and (c), the green and red noisy models
are generated by noise of R = 0.01 and R = 0.04, respec-
tively. Particularly, in the noisy model with noise of R = 0.04,
geometric structures of the mesh have moderately deteriorated.
As shown in Fig. 10, the variations in the proposed shape
descriptors for the clean and noisy models (plotted with
yellow, green and red curves) are small. Since the level of
noise for R = 0.01 is low, the yellow and green curves
basically overlap. The experimental results demonstrate that
the proposed shape descriptor is robust to noise.

C. Comparison with State-of-the-art Methods
We tested our proposed shape descriptor on four bench-

mark datasets – McGill [24], SHREC’10 ShapeGoogle [13],
SHREC’14 Human [25] and SHREC’14 LSCRTB [26]– and
compare the results with several state-of-the-art methods. Each
shape is represented by a compact 1D shape descriptor and
L2 norm is used to compute the distance between two shape
descriptors in our retrieval experiments.

1) McGill Shape Dataset: For the McGill 3D shape dataset,
we compare our method to the Hybrid BOW method [27], the
PCA-based VLAT method [28], the graph-based method [29],
the hybrid 2D/3D approach [14], the covariance descriptor
[30] and the CompactBoFHKS method (CBoFHKS) [15]. We
denote our proposed discriminative auto-encoder-based shape
descriptor by DASD. In the CompactBoFHKS method, 21
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(a) Teddy-bear models: Teddy-bear1,
Teddy-bear2, Teddy-bear3.

(b) The proposed descriptors for the Teddy-bear models.

(c) Human models: Human1, Human2, Hu-
man3.

(d) The proposed descriptors for the Human models.

Fig. 9. The proposed descriptors for the Teddy-bear model and the Human model.

(a) Clean and noisy models of Crab. (b) The proposed descriptors for the clean and noisy crab models.

(c) Clean and noisy models of Hand. (d) The proposed descriptors for the clean and noisy hand models.

Fig. 10. The proposed descriptors for the clean and noisy models of Crab and Hand. In (a) and (c), the green and red shapes were generated with noise of
R = 0.01 and R = 0.04, respectively. In (b) and (d), the descriptors for the shapes are represented by the yellow, green and red curves, corresponding to
the clean model, the noisy model with noise of R = 0.01, and the noisy model with noise of R = 0.04, respectively.
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scales are chosen every 5 scales from 101 scales for the HKS.
The size of the bag-of-words is set to 64. In our experiments,
10 shapes per class are randomly chosen to train the discrim-
inative auto-encoder and the remaining shapes in each class
are used for testing. We use different performance measures
in our evaluation, namely, Nearest Neighbor (NN), the First
Tier (1-Tier), the Second Tier (2-Tier) and the Discounted
Cumulative Gain (DCG). The retrieval performance of our
method and other state-of-the-art methods is illustrated in
Table I. From this table, we can see that the proposed method
achieves the best performance with the NN, 1-Tier, and DCG
measures. There are large non-rigid deformations with the
objects in the McGill shape dataset, which results in large
within-class variations. Nonetheless, due to the discriminative
feature representation of our method, as shown earlier in Fig.
9, DASD is robust to large non-rigid deformations.

TABLE I
RETRIEVAL RESULTS ON THE MCGILL DATASET.

Methods NN 1-Tier 2-Tier DCG
Covariance method [30] 0.977 0.732 0.818 0.937

Graph-based method [29] 0.976 0.741 0.911 0.933
PCA-based VLAT [28] 0.969 0.658 0.781 0.894

Hybrid BOW [27] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [14] 0.925 0.557 0.698 0.850

CBoFHKS [15] 0.901 0.778 0.876 0.891
DASD 0.988 0.782 0.834 0.955

2) SHREC’10 ShapeGoogle Dataset: We also compared
our proposed DASD method to the bag-of-feature (BOF)
descriptors with standard vector quantization (VQ) [13], un-
supervised dictionary learning (UDL) [16], supervised dictio-
nary learning (SDL) [16] and the CompactBoFHKS method
(CBoFHKS) [15] on the SHREC’10 ShapeGoogle dataset
[13]. We used the mean average precision criterion in our
evaluations. Evaluation results are summarized in Table II.
From this table, one can see that our proposed DASD is
superior to the BOF descriptors with standard VQ, UDL, SDL
and CBoFHKS in the cases of isometry, isometry+topology,
partiality and triangulation. Since deep auto-encoder has good
ability to model non-linearity, DASD can characterize the
low-dimensional manifold embedded in the high-dimensional
shape space better and therefore achieve better performance.
For example, in the cases of isometry+topology and partiality,
the supervised dictionary learning based shape descriptor can
achieve accuracies of 0.956 and 0.951, while our proposed
DASD can achieve accuracies of 0.982 and 0.973, respectively.

TABLE II
RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) ON THE SHREC’10

SHAPEGOOGLE DATASET.

Transformation VQ [13] UDL [16] SDL [16] CBoFHKS [15] DASD
Isometry 0.988 0.977 0.994 0.966 0.998
Topology 1.000 1.000 1.000 1.000 0.996

Isometry+Topology 0.933 0.934 0.956 0.915 0.982
Partiality 0.947 0.948 0.951 0.968 0.973

Triangulation 0.954 0.950 0.955 0.891 0.955

3) SHREC’14 Human Dataset: For the synthetic and
scanned human sub-datasets, we compare the proposed DASD
method to several recently proposed shape retrieval methods:

Histogram of area projection transform (HAPT) [31], intrinsic
pyramid matching (ISPM) [32], reduced Bi-harmonic distance
matrix (RBiHDM) [33], deep belief network (DBN) [25], the
bag-of-feature descriptors with standard vector quantization
(VQ) [13], and unsupervised dictionary learning (UDL) [16].
For the synthetic sub-dataset, 11 shapes in each class are used
to train the discriminative auto-encoder and the remaining
shapes in each class are used for testing. For the scanned
sub-dataset, 6 shapes in each class are used for training and
the remaining shapes are used for testing. The mean average
precisions are reported in Table III. The scanned sub-dataset is
an extremely challenging dataset, as can be seen in the table,
our method can achieve better performance. For the synthetic
sub-dataset, the mean average precision of our method is lower
than the ISPM method [32], and slightly lower than the DBN
[25] and UDL [16] methods.

TABLE III
RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) ON THE SHREC’14

HUMAN DATASET.

Method Synthetic model Scanned model
HAPT[31] 0.817 0.637
ISPM[32] 0.92 0.258

RBiHDM[33] 0.642 0.640
DBN[25] 0.842 0.304
VQ [13] 0.813 0.514

UDL [16] 0.842 0.523
DASD 0.823 0.657

4) SHREC’14 LSCRTB Dataset: For the SHREC’14
LSCRTB dataset, we compared our proposed DASD method to
the state-of-the-art methods [26]: CSLBP, HSR-DE, KVLAD,
DBNAA DERE, BF-DSIFT, VM-1SIFT, ZFDR and DBSVC.
We used the NN, 1-Tier, 2-Tier, E-Measures (E) and DCG
for performance evaluation. The evaluation results are listed
in Table IV. From this table, one can see that the proposed
DASD method can obtain the best performance with the NN
and E measures. In terms of the 1-Tier and 2-Tier measures,
our proposed DASD method is lower than the DBSVC method.
Nonetheless, our proposed DASD method is comparable to the
CSLBP, HSR-DE, DBNAA DERE, BF-DSIFT, VM-1SIFT
and ZFDR methods. Note that we did not compare our method
to the LCDR-DBSRC method in [26]. This is because that we
only calculated the Euclidean distance between the learned 3D
descriptors while in the LCDR-DBSRC method the manifold
ranking algorithm [34] is employed on the learned 3D shape
features.

In the compared methods, the CSLBP, HSR-DE, DB-
NAA DERE and ZFDR methods use a combination of hand-
crafted features while the KVLAD, BF-DSIFT, VM-1SIFT and
DBSVC methods use learned features. In all these methods,
the features are extracted on the rendered images by pro-
jecting the 3D shape from different viewpoints. This type of
approaches suffer from the following two drawbacks: (1) the
rendered images are sensitive to the deformation of the 3D
model; (2) pre-alignment of 3D models in the same category is
usually employed prior to 3D surface parameterization in order
to normalize the models for learning. However, normalization
of 3D models may be difficult due to different types of
structural variations.
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Nonetheless, in our proposed DASD method, based on the
HKS, the formed multiscale shape distribution is a statistic of
the local geometric structure information of the shape, which
is robust to the deformations. Then, by imposing the Fisher
discrimination criteria on the neurons in the hidden layer of the
neural network, the proposed discriminative auto-encoder can
minimize within-class variations and maximize between-class
variations of the shape features. Furthermore, the developed
discriminative auto-encoder can improve robustness of the
shape features to large deformations. And it does not need
shape alignment.

TABLE IV
RETRIEVAL RESULTS ON THE SHREC’14 LSCRTB DATASET.

Method NN 1-Tier 2-Tier E DCG
CSLBP [26] 0.840 0.353 0.452 0.197 0.736
HSR-DE[26] 0.837 0.381 0.490 0.203 0.752
KVLAD[26] 0.605 0.413 0.546 0.214 0.746

DBNAA DERE[26] 0.817 0.355 0.464 0.188 0.731
BF-DSIFT [26] 0.824 0.378 0.492 0.201 0.756
VM-1SIFT[26] 0.732 0.282 0.380 0.158 0.688

ZFDR [26] 0.838 0.386 0.501 0.209 0.757
DBSVC [26] 0.868 0.438 0.563 0.234 0.790

DASD 0.897 0.401 0.503 0.243 0.774

V. CONCLUSIONS

In this paper, we have proposed a novel deep shape de-
scriptor for 3D shape retrieval. We first compute the multiscale
shape distribution features and then train a set of discriminative
auto-encoders to extract high-level shape features at different
scales. By imposing the Fisher discrimination criterion on the
hidden layers of the auto-encoders, our feature representation
results in small within-class scatter and large between-class
scatter. Our shape descriptor is formed by concatenating the
high-level features from different scales. Experimental results
demonstrated the superior performance of our proposed de-
scriptor.
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[14] G. Lavoué, “Combination of bag-of-words descriptors
for robust partial shape retrieval,” The Visual Computer,
vol. 28, no. 9, pp. 931–942, 2012.

[15] Z. Lian and J. Zhang, et al., “SHREC’15 track: Non-
rigid 3D shape retrieval,” in Eurographics Workshop on
3D Object Retrieval, Zurich, Switzerland, 2015, pp. 107–
120.

[16] R. Litman, A. M. Bronstein, M. M. Bronstein, and
U. Castellani, “Supervised learning of bag-of-features
shape descriptors using sparse coding,” Computer Graph-
ics Forum, vol. 33, no. 5, pp. 127–136, 2014.

[17] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,
and J. Xiao, “3D shapenets: A deep representation for
volumetric shapes,” in IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 2015,
pp. 1912–1920.

[18] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein,
U. Castellani, and P. Vandergheynst, “Learning class-
specific descriptors for deformable shapes using localized
spectral convolutional networks,” Computer Graphics



11

Forum, vol. 34, no. 5, pp. 13–23, 2015.
[19] J. Masci, D. Boscaini, M. M. Bronstein, and P. Van-

dergheynst, “Geodesic convolutional neural networks on
Riemannian manifolds,” in IEEE Workshop on 3D Rep-
resentation and Recognition (3dRR), 2015.

[20] G. Hinton and R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504 – 507, 2006.

[21] Y. Bengio, “Learning deep architectures for AI,” Foun-
dations and Trends in Machine Learning, vol. 2, no. 1,
pp. 1–127, 2009.

[22] R. Osada, T. Funkhouser, B. Chazelle, and D. Dokin,
“Shape distributions,” ACM Transactions on Graphics,
vol. 33, pp. 133–154, 2002.

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi-
fication (2nd Ed). Wiley, 2001.

[24] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh,
S. Bouix, and S. J. Dickinson, “Retrieving articulated
3D models using medial surfaces,” Machine Vision Ap-
plication, vol. 19, no. 4, pp. 261–275, 2008.

[25] D. Pickup and X. Sun, et al., “SHREC’14 track: Shape
retrieval of non-rigid 3D human models,” in Euro-
graphics Workshop on 3D Object Retrieval, Strasbourg,
France, 2014.

[26] B. Li and Y. Lu, et al., “SHREC’14 track: Large
scale comprehensive retrieval track benchmark,” in Euro-
graphics Workshop on 3D Object Retrieval, Strasbourg,
France, 2014.

[27] P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, and
S. J. Perantonis, “3D object retrieval using an efficient
and compact hybrid shape descriptor,” in Eurographics
Workshop on 3D Object Retrieval, Crete, Greece, 2008,
pp. 9–16.

[28] H. Tabia, D. Picard, H. Laga, and P. H. Gosselin,
“Compact vectors of locally aggregated tensors for 3D
shape retrieval,” in Eurographics Workshop on 3D Object
Retrieval, Girona, Spain, 2013, pp. 17–24.

[29] A. Agathos, I. Pratikakis, P. Papadakis, S. J. Perantonis,
P. N. Azariadis, and N. S. Sapidis, “Retrieval of 3D
articulated objects using a graph-based representation,” in
Eurographics Workshop on 3D Object Retrieval, Munich,
Germany, 2009, pp. 29–36.

[30] H. Tabia, H. Laga, D. Picard, and P. H. Gosselin, “Covari-
ance descriptors for 3D shape matching and retrieval,”
in IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 2014, pp. 4185–4192.

[31] A. Giachetti and C. Lovato, “Radial symmetry detection
and shape characterization with the multiscale area pro-
jection transform,” Computer Graphics Forum, vol. 31,
no. 5, pp. 1669–1678, 2012.

[32] C. Li and A. B. Hamza, “A multiresolution descriptor for
deformable 3D shape retrieval,” The Visual Computer,
vol. 29, no. 6-8, pp. 513–524, 2013.

[33] J. Ye, Z. Yan, and Y. Yu, “Fast nonrigid 3D retrieval using
model space transform,” in International Conference on
Multimedia Retrieval, Dallas, TX, USA, 2013, pp. 121–
126.

[34] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and

B. Schölkopf, “Ranking on data manifolds,” in Advances
in Neural Information Processing Systems, Vancouver
and Whistler, British Columbia, Canada, 2003, pp. 169–
176.

Jin Xie received his Ph.D. degree from the Depart-
ment of Computing, The Hong Kong Polytechnic
University. He is a postdoctoral associate at New
York University Abu Dhabi. His research interests
include image forensics, computer vision and ma-
chine learning. Currently he is focusing on 3D
computer vision with the convex optimization and
deep learning methods.

Guoxian Dai received his master degree from Fudan
University, China. He is a Ph.D. candidate in the
Department of Computer Science and Engineering
at the New York University Tandon School of Engi-
neering. His current research interests focus on 3D
shape analysis such as 3D shape retrieval and cross-
domain 3D model retrieval.

Fan Zhu received the MSc degree with distinction
in Electrical Engineering and the Ph.D. degree at
the Visual Information Engineering group from the
Department of Electronic and Electrical Engineer-
ing, the University of Sheffield, Sheffield, U.K,
in 2011 and 2015, respectively. He is currently a
post-doctoral associate at New York University Abu
Dhabi. His research interests include submodular
optimization for computer vision, sparse coding,
3D feature learning, dictionary learning and transfer
learning. He has authored/co-authored over 10 pa-

pers in well-known journals/conferences such as IJCV, IEEE TNNLS, CVPR,
CIKM and BMVC, and two China patents. He has been awarded the National
Distinguished Overseas Self-funded Student of China prize in 2014. He serves
as a reviewer of IEEE Transactions on Cybernetics.

Edward K. Wong received his Ph.D. degree in
Electrical Engineering from Purdue University. He
is currently an associate professor and the director
of MS CS program in the Department of Computer
Science and Engineering at the New York University
Tandon School of Engineering. His research interests
lie in the general areas of computer vision, pat-
tern recognition, and machine learning. His current
research focus is on developing novel machine-
learning-based techniques for video surveillance ap-
plications. He had previously worked on funded

projects in document image analysis and security, video scene segmentation
and classification, fingerprint verification, morphological image processing,
infrared target classification, three-dimensional object recognition, pavement
image analysis, and optical character recognition, among others. He had
published extensively in image processing and multimedia conferences and
journals. Dr. Wong is currently an associate editor for two international
journals in multimedia and security, and he had served on the organizing
committee and technical program committee of several major IEEE and ACM
technical conferences in image processing and multimedia.



12

Yi Fang received his Ph.D. degree from Purdue
University with research focus on computer graphics
and vision. Upon one year industry experience as
a research intern in Siemens in Princeton, New
Jersey and a senior research scientist in Riverain
Technologies in Dayton, Ohio, and a half-year aca-
demic experience as a senior staff scientist at De-
partment of Electrical Engineering and Computer
science, Vanderbilt University, Nashville, he joined
New York University Abu Dhabi as an Assistant
Professor of Electrical and Computer Engineering.

He is currently working on the development of state-of-the-art techniques in
large-scale visual computing, deep visual learning, deep cross-domain and
cross-modality model, and their applications in engineering, social science,
medicine and biology.


	INTRODUCTION
	Background
	Heat Kernel Signature
	Auto-encoder

	Proposed Approach 
	Multiscale Shape Distribution
	Discriminative Auto-encoder
	3D Shape Descriptor 

	Experimental results
	Experimental Settings
	Evaluation of The Proposed 3D Shape Descriptor
	Comparison to Multiscale Shape Distribution Descriptor
	Comparison to Standard Auto-encoder
	Robustness to Deformations and Noise

	Comparison with State-of-the-art Methods
	McGill Shape Dataset
	SHREC'10 ShapeGoogle Dataset
	SHREC'14 Human Dataset
	SHREC'14 LSCRTB Dataset


	Conclusions
	Biographies
	Jin Xie
	Guoxian Dai
	Fan Zhu
	Edward K. Wong
	Yi Fang


