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Deep Multi-metric Learning for Shape-based 3D
Model Retrieval
Jin Xie, Guoxian Dai, and Yi Fang

Abstract—Recently feature learning based 3D shape retrieval
methods have been receiving more and more attention in the
3D shape analysis community. In these methods, the hand-
crafted metrics or the learned linear metrics are usually used
to compute the distances between shape features. Since there
are complex geometric structural variations with 3D shapes,
the single hand-crafted metric or learned linear metric cannot
characterize the manifold where 3D shapes lie well. In this
paper, by exploring the non-linearity of the deep neural network
and the complementarity among multiple shape features, we
propose a novel deep multi-metric learning method for 3D shape
retrieval. In our method, a novel deep multi-metric network is
developed to learn multiple non-linear distance metrics from
multiple types of shape features. The developed multi-metric
network minimizes a discriminative loss function that for each
type of shape feature the outputs of the network from the same
class are encouraged to be as similar as possible and the outputs
from different classes are encouraged to be as dissimilar as
possible. Meanwhile, the Hilbert-Schmid independence criterion
(HSIC) is employed to enforce the outputs of different types of
shape features to be as complementary as possible. Furthermore,
the weights of the learned multiple distance metrics can be
adaptively determined in our developed deep metric network.
The weighted distance metric is then used as the similarity for
shape retrieval. We conduct the experiments with the proposed
method on the four benchmark shape datasets, i.e., the Princeton
Shape Benchmark (PSB), McGill, SHREC’10 ShapeGoogle and
SHREC’14 Human datasets. Experimental results demonstrate
that the proposed method can obtain better performance than
the learned deep single metric and outperform the state-of-the-art
3D shape retrieval methods.

Index Terms—3D shape retrieval, 3D shape descriptor, multiple
shape features, deep neural network, metric learning.

I. INTRODUCTION

SHAPE based 3D model retrieval is an important research
topic in the 3D shape analysis community [1–3]. With the

recent advancement of the 3D model acquisition technology,
large amounts of 3D shape data were captured and the large-
scale 3D shape dataset such as google 3D warehouse [4] was
created. Given a query shape, it is preferable to develop an
effective shape retrieval algorithm to search similar shapes
in a large collection of 3D shapes. Different from 2D im-
ages, 3D shapes usually do not have the rich texture and
color information, but has the geometric structure information.
Based on geometric structures of 3D shapes, discriminative
shape features can be extracted to represent shapes. Once
shape features are obtained, we can employ a distance metric
as the similarity between the shape features for retrieval.
Nonetheless, due to large deformations with 3D shapes, how
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to effectively measure the distance metric between 3D shapes
is still a challenging problem in 3D shape retrieval.

In the past decades, various kinds of 3D shape retrieval
methods [5–12] have been proposed. These methods mainly
focus on extracting novel shape features to represent 3D
shapes. Once shape features are extracted, the classic hand-
crafted distance metric such as the Euclidean distance, or
the learned linear distance metric, is used for retrieval. For
example, in [10], the similarity sensitive hashing (SSH) is
employed to learn the distance between the extracted bag-
of-word (BOW) features for shape retrieval. Due to complex
geometric structural variations, single shape features are not
discriminative enough to characterize 3D shapes. Compared
to the single shape features, multiple shape features can
characterize 3D shapes better, where each type of feature may
contain some information that other types do not have. In the
multiple shape features based shape retrieval methods [13–
15], multiple types of shape features are usually concatenated
together to form a new feature vector and the existing hand-
crafted distance metric or the learned linear distance metric is
applied on it for shape retrieval. However, since multiple shape
features are not fully independent, the simple concatenation
cannot fully exploit the complementary information of the
multiple shape features. In addition, since there are usually
large deformations with 3D shapes, the hand-crafted distance
metric or the learned linear distance metric, cannot character-
ize the manifold of 3D shapes well.

In this paper, by exploring the non-linearity of the deep
neural network and the complementarity of multiple shape
features, we propose a novel deep multi-metric network to map
multiple shape features to multiple non-linear feature spaces.
It is expected that in the non-linear feature spaces the learned
multiple deep shape features are discriminative and comple-
mentary so that they can characterize the manifold of 3D
shapes well. Particularly, we construct a multi-metric network
to jointly learn multiple non-linear metrics by minimizing the
within-class variations of the learned shape features, maximiz-
ing the between-class variations of the learned shape features
and employing the Hilbert-Schmidt independence criterion
(HSIC) [16] to minimize dependence of the learned multiple
shape features, simultaneously. The learned distance metrics
are fused as the similarity for shape retrieval. Experimental
results on four 3D shape datasets demonstrate the effectiveness
of the proposed deep multi-metric learning method for 3D
shape retrieval.

The main contribution of our work is that we develop a
novel deep multi-metric network to learn multiple non-linear
distance metrics by enforcing the outputs of the network
to be discriminative and diverse. Moreover, the weights of
the learned distance metrics can be obtained by optimizing
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the weighted within-class and between-class variations of the
learned multiple shape features. The constructed deep multi-
metric network can seek multiple non-linear transformations
to map multiple shape features to the non-linear and diverse
feature spaces. The transformed non-linear feature spaces can
more effectively characterize the manifold of the deformed 3D
shapes.

The rest of the paper is organized as follows. Section
II introduces related work. In Section III, we present the
proposed deep multi-metric learning method for 3D shape
retrieval. Section IV presents the experimental results and
Section V concludes the paper.

II. RELATED WORK

Since 3D shapes can be rendered to a group of 2D depth
images at different viewpoints, the classical image features can
be extracted on depth images to represent shapes for retrieval.
Based on the vector quantization scheme, BOW features have
been widely used as shape descriptors. Furuya and Ohbuchi
[8] proposed to learn the BOW feature from a collection of
SIFT features for shape retrieval. Gao et al. [17] employed
the BOW feature to describe each region of the depth images.
Each 3D shape is then represented by a set of BOW features
associated with the selected representative regions and the
Earth Mover’s distance is used for retrieval. In [18], a polygon
of the contour of the projected depth image is first obtained
and a set of contour fragments is generated. The BOW features
are then learned from a collection of local contour fragment
features for shape retrieval. In[19], based on the projected
images, query views are incrementally selected for shape
matching and retrieval. In [9], Bai et al. proposed the two
layer coding framework to encode depth images to form a 3D
shape descriptor for retrieval. Recently, deep learning has been
employed to form deep shape descriptors [20–27] for 3D shape
analysis. Leng et al. [25] developed a 3D convolutional neural
network (CNN) to learn a shape descriptor for retrieval, which
can operate on all views of a 3D model. Su et al. [23] proposed
a multi-view CNN to learn shape descriptors from rendered
images at different views. In [22], the authors converted a
3D shape into a panoramic view based image and employed
a rotation invariant CNN to learn a deep representation for
retrieval. Based on projected images, Bai et al. [24] proposed
a CNN based real-time 3D shape retrieval algorithm, which
can scale up to the large scale shape datasets.

The local shape descriptors such as heat kernel signature
(HKS) [28], scale invariant heat kernel signature (SI-HKS)
[29], wave kernel signature (WKS) [30] and covariance de-
scriptor [31] can also be used to construct global shape
descriptors for retrieval. With the K-means clustering method
or the sparse coding method, the BOW feature extraction
paradigm is applied to these local shape descriptors to rep-
resent 3D shapes [10, 11, 32]. For example, in [32], by
selecting some scales of the HKS, EINagh et al. proposed
the compact HKS based BOW feature for shape retrieval. Bu
et al. [33] employed deep belief network to learn high-level
shape features from the extracted BOW features. Based on
the multi-scale shape distribution of the HKS, Xie et al. [12]

developed a deep multi-scale discriminative auto-encoder and
the neurons in the hidden layers are concatenated to form a
global shape descriptor for retrieval. Wu et al. [34] proposed
to represent 3D shape by a probability distribution of binary
variables on a 3D voxel grid with a convolutional deep belief
network. In [35, 36], based on the local geometry structures
of 3D meshes, the circle convolutional Boltzmann machine
and mesh convolutional deep belief network are developed to
extract shape features for shape retrieval, respectively.

Recent studies show that the combination of multiple types
of shape features can improve shape retrieval performance.
M. Aono et al. [37] employed center-symmetric local binary
pattern, entropy descriptor and optional chain code to describe
rendered depth images for retrieval. Li et al. [13] developed a
hybrid shape descriptor, ZFDR, by integrating both visual and
geometric information of 3D shapes. The ZFDR descriptor is
the combination of Zernike moments and Fourier features of
projected 2D images, depth information features and ray-based
features. Chen et al. [14] combined five types of shape features
to form a weighted 3D shape descriptor for shape retrieval: D2
feature, bounding box feature, normal angle area feature, depth
buffer-based feature and ray-extent feature. In [15], two types
of variants of SIFT features, dense SIFT and one SIFT, are
extracted from multi-view rendered depth images. The dense
SIFT is a local feature while one SIFT is a global feature.
Then, two types of shape descriptors are formed to represent
3D shapes: one is the BOW feature learned from a collection
of dense SIFTs and the other is the concatenation of one
SIFTs.

In the aforementioned methods, once the shape descriptors
are extracted, the Euclidean distance is usually used as the
similarity for shape retrieval. Also, the similarity sensitive
hashing (SSH) [10] and the Manifold ranking [15] are used
to learn distance metrics for 3D shape retrieval. For the
combination of multiple types of shape features, by manually
setting the weights of multiple shape features, the weighted
distance metric is used for shape retrieval. Nonetheless, the
simple combination does not consider the complementarity
of multiple shape features and the weights between multiple
shape features are not adaptively determined.

III. PROPOSED APPROACH

In this section, we present the proposed deep multi-metric
learning method for 3D shape retrieval in detail. Fig. 1
illustrates our proposed deep multi-metric learning framework.
We first extract different types of global 3D shape descriptors
to form multiple types of shape features with the locality
constrained linear coding (LLC) method [38]. We then use
multiple shape features as inputs to train multiple deep metric
networks. For each metric network, the within-class variations
of the outputs of the network are minimized and the between-
class variations of the outputs are maximized. Meanwhile, de-
pendence between the outputs from different metric networks
is minimized with the HSIC. It is expected that the outputs of
multiple metric networks, i.e., multiple kinds of learned shape
features, are as discriminative and complementary as possible.
For each metric network, the distance between the learned
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shape features from two shapes is calculated. Finally, multiple
distances are weighted to form the similarity for retrieval.

A. Deep Multi-metric Learning

In our deep multi-metric learning framework, based on the
extracted point signatures such as SI-HKS [29], WKS [30]
and LDSIFT [39], we use LLC to encode each vertex to form
the encoding coefficient histograms as multiple types of shape
features. We denote the vth type of shape feature from shape
i by xv,i, i = 1, 2, · · · , N , v = 1, 2, · · · , V , where N is the
number of shapes and V is the type number of shape features.
With the input shape feature xv,i ∈ Rm×1, we can construct
a deep neural network to compute the output zKv,i ∈ Rr×1 by
multiple layers of non-linear transformations, where m and r
are the dimensions of the input and output of the deep neural
network, K is the layer number. In the constructed network,
each neuron in the current layer is connected to all neurons in
the next layer. The output of layer k + 1, zk+1

v,i , is :

zk+1
v,i = σ(W k

v z
k
v,i + b

k
v) (1)

where W k
v and bkv are the weight and bias between layer k

and layer k + 1, respectively, zkv,i is the neuron in layer k
for the input shape feature xv,i, σ(x) is the sigmoid function.
For V types of shape features, our deep multi-metric learning
framework can learn V non-linear transformations with V
metric networks, where for each pair of features, xv,i and xv,j ,
the distance metric between xv,i and xv,j can be converted
into the distance metric between the outputs zKv,i and zKv,j in
the transformed non-linear feature spaces. Moreover, multiple
distance metrics are fused in the transformed non-linear feature
spaces so that they can characterize the manifold of 3D shapes
better.

In our constructed deep multi-metric network, it is desirable
that the learned multiple deep shape features are discriminative
and complementary so that the learned distance metrics can
measure the similarities between shapes well. In order to learn
the discriminative shape feature zKv,i, we define the following
two loss functions between the samples from the same class
and the samples from different classes, respectively:

l+(z
K
v,i, z

K
v,i1) =

1

2
‖zKv,i − zKv,i1‖

2
2

l−(z
K
v,i, z

K
v,i1 , z

K
v,i2) = max(η,

1

2
‖zKv,i − zKv,i1‖

2
2−

1

2
‖zKv,i − zKv,i2‖

2
2)

(2)

where l+(zKv,i, z
K
v,i1

) is the loss between the positive pair zKv,i
and zKv,i1 , l−(zKv,i, z

K
v,i1

, zKv,i2) is the loss between the negative
pair zKv,i and zKv,i2 , η is a small constant, i = 1, 2, · · · , N and
v = 1, 2, · · · , V . The loss l−(zKv,i, z

K
v,i1

, zKv,i2) can achieve a
gap by at least η between the dissimilarity of the positive and
negative pairs.

In order to guarantee the complementarity among the mul-
tiple types of shape features, we employ the Hilbert-Schmid
independence criterion (HSIC) [16] to measure dependence
between the multiple types of shape features. For an in-
dependent observation (xn, yn) drawn from the probability

distribution pxy , n = 1, 2, · · · , N , we define the HSIC as the
Hilbert-Schmid norm of the cross-variance Cxy:

HSIC(x1, y1, · · · , xN , yN ) = ‖Cxy‖2HS (3)

where the cross-variance Cxy = Exy[(φ(x) − µx) ⊗ (φ(y) −
µy)], φ(x) is the kernel mapping function, µx = E(φ(x)) and
µy = E(φ(y)), ⊗ is the tensor product, the Hilbert-Schmid
norm ‖A‖HS =

√∑
i,j a

2
ij and aij is the element of A.

However, since the joint distribution pxy is usually unknown,
we empirically estimate the HSIC [16] as:

HSIC(x1, y1, · · · , xN , yN ) =
1

(N − 1)2
tr(GHLH) (4)

where G and L are the Gram matrices, Gi,j = G(xi, xj) and
Li,j = L(yi, yj),Hi,j = δi,j− 1

N . In our deep metric network,
we use the inner product kernel to compute HSIC(zKv ,zKv′
), i.e., Gv = (zKv )TzKv , Lv′ = (zKv′ )

TzKv′ , where zKv =
[zKv,1, z

K
v,2, · · · , zKv,N ] and zKv′ = [zKv′,1, z

K
v′,2, · · · , zKv′,N ].

Based on Eqs. (2) and (4), we propose the following deep
multi-metric learning model:

J(W , b,θ) =
α

Nt

V∑
v=1

N∑
i=1

∑
i1∈c(i)

θvl+(z
K
v,i, z

K
v,i1)

+
1− α
Nt

V∑
v=1

N∑
i=1

∑
i1,i2∈g(i)

θvl−(z
K
v,i, z

K
v,i1 , z

K
v,i2)+

λ
∑

v=1;v 6=v′

1

2
HSIC(zKv , z

K
v′ ) +

1

2
γ

V∑
v=1

K−1∑
k=1

‖W k
v ‖2F+

1

2
τ

V∑
v=1

θ2v s.t.

V∑
v=1

θv = 1, θv > 0

(5)

where W =
{
W 1

1 ,W
2
1 , · · · ,WK−1

V

}
, b ={

b11, b
2
1, · · · , bK−1V

}
, and θ = [θ1, θ2, · · · , θV ], 0 ≤ α ≤ 1

controls the tradeoff between the losses of the positive outputs
and the losses of the negative outputs, t is the number of the
positive/negative outputs, θv is the nonnegative weight for
the vth type of shape feature, c(i) is the set of labels of the
positive outputs for each output zKv,i, g(i) is the set of label
pairs of the positive and negative outputs, v = 1, 2, · · · , V ,
v′ = 1, 2, · · · , V , parameters λ, γ and τ are the positive
scalars.

In the proposed deep multi-metric learning model, the first
two terms in Eq. (5) enforce that for each type of shape
feature the variations of the outputs from the same class
are as small as possible and the variations of outputs from
different classes are as large as possible. The third term in Eq.
(5) minimizes dependence between the outputs from different
types of shape features so that the outputs from different
types of shape features are as complementary as possible. To
furthermore explore the complementarity of multiple types of
shape features, we also learn the weight θv for the vth type
of shape feature.

B. Solving the Optimization Problem

In Eq. (5), variables W , b and θ need to be optimized.
We employ the alternative optimization method to obtain the
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Fig. 1. The proposed deep multi-metric learning framework. Based on different types of 3D shape point signatures, the LLC method [38] is employed to
extract the global shape descriptors. The formed multiple types of shape features are then fed into the deep multi-metric network so that the learned deep
shape features are discriminative and complementary. The learned multiple non-linear distance metrics are fused with the learned weights for retrieval.

solution by alternately updating one variable and fixing the
other variables.

Update W . By fixing variables b and θ, we can use the
back-propagation method [40, 41] to update variable W . In
Eq. (5), according to the definition of HSIC, we have:

∑
v=1;v 6=v′

1

2
HSIC(zKv , z

K
v′ )

=
1

(N − 1)2

∑
v=1;v 6=v′

1

2
tr(GvHLv′H)

=
1

(N − 1)2

∑
v=1;v 6=v′

1

2
tr((zKv )TzKv H(zKv′ )

TzKv′H).

(6)

Denote 1
2 tr((z

K
v )TzKv H(zKv′ )

TzKv′H) in Eq. (6) by
e(zKv , z

K
v′ ). The partial derivative of the objective function

J(W , b,θ) with respect to W k
v can be computed as:

∂J(W , b,θ)

∂W k
v

=
α

Nt

N∑
i=1

∑
i1∈c(i)

θv
∂l+(z

K
v,i, z

K
v,i1

)

∂W k
v

+

1− α
Nt

N∑
i=1

∑
i1,i2∈g(i)

θv
∂l−(z

K
v,i, z

K
v,i1

, zKv,i2)

∂W k
v

+

λ

(N − 1)2

∑
v′ 6=v

∂e(zKv , z
K
v′ )

∂W k
v

+ γW k
v .

(7)

For layer k, let ak+1
v,i be the weighted sum in layer k + 1,

ak+1
v,i =W k

v z
k
v,i+b

k
v , k = 1, 2, · · · ,K−1.

∂l+(zK
v,i,z

K
v,i1

)

∂W k
v

can
be re-written as the following formula:

∂l+(z
K
v,i, z

K
v,i1

)

∂W k
v

=
∂l+(z

K
v,i, z

K
v,i1

)

∂ak+1
v,i

∂ak+1
v,i

∂W k
v

+

∂l+(z
K
v,i, z

K
v,i1

)

∂ak+1
v,i1

∂ak+1
v,i1

∂W k
v

.

(8)

Denote 1
2‖z

K
v,i − zKv,i2‖

2
2 in l−(z

K
v,i, z

K
v,i1

, zKv,i2) by

d(zKv,i, z
K
v,i2

). Similar to Eq. (8), we can obtain:

∂d(zKv,i, z
K
v,i2

)

∂W k
v

=
∂d(zKv,i, z

K
v,i2

)

∂ak+1
v,i

∂ak+1
v,i

∂W k
v

+
∂d(zKv,i, z

K
v,i2

)

∂ak+1
v,i2

∂ak+1
v,i2

∂W k
v

.

(9)

∂e(zK
v ,zK

v′ )

∂W k
v

can be re-written as:

∂e(zKv , z
K
v′ )

∂W k
v

=
∑
i

∂e(zKv , z
K
v′ )

∂ak+1
v,i

∂ak+1
v,i

∂W k
v

. (10)

Let
∂l+(zK

v,i,z
K
v,i1

)

∂ak+1
v,i

,
∂l+(zK

v,i,z
K
v,i1

)

∂ak+1
v,i1
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∂d(zK

v,i,z
K
v,i2

)

∂ak+1
v,i

,
∂d(zK

v,i,z
K
v,i2

)

∂ak+1
v,i2

and ∂e(zK
v ,zK

v′ )

∂ak+1
v,i

be the errors δl,vk+1,i, δ
l,v
k+1,i1

,

δd,vk+1,i, δ
d,v
k+1,i2

and δe,vk+1,i, respectively. For k = K− 1, δl,vK,i,
δl,vK,i1

, δd,vK,i, δ
d,v
K,i2

, δe,vK,i can be represented as:

δl,vK,i = (zKv,i − zKv,i1) • σ
′(aK

v,i)

δl,vK,i1
= (−zKv,i + zKv,i1) • σ

′(aK
v,i1)

δd,vK,i = (zKv,i − zKv,i2) • σ
′(aK

v,i)

δd,vK,i2
= (−zKv,i + zKv,i2) • σ

′(aK
v,i2)

δe,vK,i = (zKv H(zKv′ )
TzKv′H)i • σ′(aK

v,i)

(11)

where σ′(aK
v,i) is the derivative of the activation function in

the output layer, • denotes the element-wise multiplication
and (zKv H(zKv′ )

TzKv′H)i is the ith column of the matrix
zKv H(zKv′ )

TzKv′H . For layer k = K − 2,K − 3, · · · , 1, with
the back-propagation algorithm, δl,vk+1,i can be obtained as:

δl,vk+1,i = ((W k+1
v )T δl,vk+2,i) • σ

′(ak+1
v,i ). (12)

Similar to Eq. (12), δl,vk+1,i1
, δd,vk+1,i, δ

d,v
k+1,i2

and δe,vk+1,i can
also be obtained as:

δl,vk+1,i1
= ((W k+1

v )T δl,vk+2,i1
) • σ′(ak+1

v,i1
)

δd,vk+1,i = ((W k+1
v )T δd,vk+2,i) • σ

′(ak+1
v,i )

δd,vk+1,i2
= ((W k+1

v )T δd,vk+2,i2
) • σ′(ak+1

v,i2
)

δe,vk+1,i = ((W k+1
v )T δe,vk+2,i) • σ

′(ak+1
v,i ).

(13)
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Thus,
∂l+(zK

v,i,z
K
v,i1

)

∂W k
v

can be represented as:

∂l+(z
K
v,i, z

K
v,i1

)

∂W k
v

= δl,vk+1,i(z
k
v,i)

T + δl,vk+1,i1
(zkv,i1)

T . (14)

For
∂l−(z

K
v,i,z

K
v,i1

,zK
v,i2

)

∂W k
v

, if η ≥ ‖zKv,i−zKv,i1‖
2
2−‖zKv,i−zKv,i2‖

2
2,

∂l−(z
K
v,i,z

K
v,i1

,zK
v,i2

)

∂W k
v

= 0; if η < ‖zKv,i−zKv,i1‖
2
2−‖zKv,i−zKv,i2‖

2
2,

∂l−(z
K
v,i,z

K
v,i1

,zK
v,i2

)

∂W k
v

can be represented as:

∂l−(z
K
v,i, z

K
v,i1

, zKv,i2)

∂W k
v

= δl,vk+1,i(z
k
v,i)

T + δl,vk+1,i1
(zkv,i1)

T

− δd,vk+1,i(z
k
v,i)

T − δd,vk+1,i2
(zkv,i2)

T .
(15)

∂e(zK
v ,zK

v′ )

∂W k
v

can be calculated as:

∂e(zKv , z
K
v′ )

∂W k
v

=
∑
i

δe,vk+1,i(z
k
v,i)

T . (16)

With Eqs. (14), (15) and (16), we can obtain ∂J(W ,b,θ)
∂W k

v
. Then

W k
v is updated with the gradient descent method.
Update b. By fixing variables W and θ, we can also use

the back-propagation method to update variable b. The partial
derivative of the objective function J(W , b,θ) with respect
to bkv can be computed as:

∂J(W , b,θ)

∂bkv
=

α

Nt

N∑
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∑
i1∈c(i)

θv
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K
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v,i1

)

∂bkv
+

1− α
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∂l−(z

K
v,i, z

K
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+

λ

(N − 1)2
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K
v′ )
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.

(17)

The partial derivative of l+(zKv,i, z
K
v,i1

) with respect to bkv ,
∂l+(zK

v,i,z
K
v,i1

)

∂bkv
, can be represented as:
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K
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)
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)
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, we can calculate as:
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Thus, for
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Algorithm 1 Training algorithm of the proposed deep multi-metric
learning model.
Input: multiple shape features xv,i; layer number K of the
network; weight α; constant η; regularization parameters λ, γ
and τ ; learning rate β.
Output: W , b and θ.
For s = 1, 2, · · · , S:

1) Compute the forward outputs of the neural network for
all shape features xv,i, v = 1, 2, · · · , V ;

2) For k = K − 1,K − 2, · · · , 1
Compute ∂J(W ,b,θ)

∂W k
v

with Eqs. (14), (15) and (16) and

update W k
v : W k

v =W k
v − β

∂J(W ,b,θ)
∂W k

v
;

Compute ∂J(W ,b,θ)
∂bkv

with Eqs. (18), (20) and (21) and

update bkv : bkv = bkv − β
∂J(W ,b,θ)

∂bkv
;

3) Update θ with the interior-point algorithm to solve the
quadratic programming problem Eq. (22).

Output W , b and θ until the difference between the values of
J(W , b,θ) in adjacent iterations is smaller than the threshold
or the setting iteration number is reached.

∂e(zK
v ,zK

v′ )

∂bkv
can be calculated as:

∂e(zKv , z
K
v′ )

∂bkv
=
∑
i

δe,vk+1,i. (21)

With Eqs. (18), (20) and (21), we can obtain ∂J(W ,b,θ)
∂bkv

.
Update θ. By fixing variables W and b, Eq. (5) can be

converted into a standard quadratic programming problem:

θ̂ = argminθ

V∑
v=1

θv

N∑
i=1

(
∑

i1∈c(i)

α

Nt
l+(z

K
v,i, z

K
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1− α
Nt

l−(z
K
v,i, z

K
v,i1 , z

K
v,i2)) +

1

2
τ

V∑
v=1

θ2v

s.t.

V∑
v=1

θv = 1, θv > 0.

(22)

Variable θ can be solved with the classical interior-point
method [42]. The training algorithm of the proposed deep
multi-metric learning model is summarized in Algorithm. 1.

Once W , b and θ are learned, in order to exploit the
complementarity of the multiple shape features, we can use
the fused distance metric

∑
θv‖zKv,i − zKv,j‖2 for retrieval.

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate our proposed deep multi-
metric learning model for retrieval, and then compare it
with the state-of-the-art 3D shape retrieval methods on four
benchmark datasets, i.e., Princeton Shape Benchmark (PSB)
[43], McGill shape dataset [44], SHREC’10 ShapeGoogle
dataset [10] and SHREC’14 Human dataset [45].

A. Experimental Settings
For the four 3D shape datasets, we extract different types

of point signatures to form multiple shape features. The point
signatures used in our paper is shown as follows.
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• SI-HKS. Scale invariant heat kernel signature (SI-HKS)
[29] is the scale invariant version of heat kernel signature
(HKS) [28]. SI-HKS can be constructed by taking the
absolute values of the Fourier transform of the derivative
of HKS at different frequencies.

• WKS. In wave kernel signature (WKS) [30], the behavior
of a quantum particle on the meshed surface is modeled
by the Schrödinger equation. Based on the solution of the
Schrödinger equation, the average probability to measure
the particle at the point is used to construct WKS.

• LDSIFT. For each interested point on the meshed surface,
the depth map of the point is computed by projecting
a neighborhood to its dominant plane. Then we can
compute the SIFT descriptor on the projected local depth
map to form the local depth SIFT (LDSIFT) descriptor
[39].

For SI-HKS, we take 19 frequency components to compute
SI-HKS and form a 19-dimensional feature vector. We also
choose 100-dimensional WKS and 128-dimensional LDSIFT
to describe shapes. In the LLC method, for each type of
point signature, the size of the learned dictionary is 2000
and 5 atoms are selected to form the sub-dictionary. Thus,
for each shape, three types of 2000-dimensional global 3D
shape descriptors are formed as multiple shape features. In the
proposed deep multi-metric learning model, the neural network
with layers of 2000-1500-1000-500 is used. Moreover, in
Eq. (5), parameters η, α, λ, γ and τ are set to 4.5, 0.6,
0.06, 0.001 and 0.2, respectively. Moreover, for each training
sample, we choose 3 positive/negative samples to form the
positive/negative pairs.

The PSB dataset consists of two subsets: training subset and
testing subset. The training subset contains 907 3D shapes
from 90 classes while the testing subset contains 907 3D
shapes from 92 classes. Fig. 2 shows example shapes in the
PSB dataset.

The McGill 3D shape dataset includes ten objects: ant,
crab, spectacle, hand, human, octopus, plier, snake, spider
and teddy-bear, which contains 255 3D shapes. There are
significant part articulations with the shapes. Fig. 3 shows the
ten objects in the McGill shape dataset.

The SHREC’10 ShapeGoogle dataset consists of 715 shapes
from 13 classes of objects. In order to make the dataset
challenging, 456 shapes unrelated to 13 classes of objects are
also included in this dataset. Five simulated transformations,
isometry, topology, isometry+topology, partiality and triangu-
lation, are applied to 715 3D shapes (55 transformations per
class). The shapes are represented by triangular meshes with
different numbers of vertices ranging from 300 and 30000.
Fig. 4 shows the example model with the five simulated
transformations and five unrelated example shapes in the
SHREC’10 ShapeGoogle dataset.

The SHREC’14 Human dataset contains two sub-datasets.
One is created by DAZ studio, called the synthetic sub-
dataset. The other is obtained by scanning real human body
shapes, called the scanned sub-dataset. The synthetic sub-
dataset includes 300 human shapes from 15 different human
models, where there are five male, five female and five child
body models. The scanned sub-dataset is composed of 400

scanned human shapes from 40 human models, where half the
models are male and half female. Different from the McGill
3D shape dataset, there are only human shapes in this dataset.
Compared to the generic objects in the McGill 3D shape
dataset, differences between human bodies are much more
subtle, which makes this dataset very challenging. Fig. 5 shows
the example human shapes in this dataset.

B. Evaluation of the Proposed Method

1) Comparison to the learned single distance metric: In
order to demonstrate the effectiveness of the proposed deep
multi-metric learning model for shape retrieval, we compare
the proposed model to the learned single distance metric on
the McGill shape dataset.

In our evaluation, the single distance metric is learned with
the model:

argminW ,b
α

Nt

N∑
i=1

∑
i1∈c(i)

l+(z
K
i , z

K
i1 ) +

1− α
Nt

N∑
i=1

∑
i1,i2∈g(i)

l−(z
K
i , z

K
i1 , z

K
i2 ) +

1

2
γ

K−1∑
k=1

‖W k‖2F .

(23)
Once W and b are learned, we can use the Euclidean distance
between the outputs of the network as the similarity for shape
retrieval.

We denote the proposed deep multi-metric learning model
by MMLM. We denote the deep single metric learning
model with SI-HKS, WKS and LDSIFT by SI-HKS SMLM,
WKS SMLM and LDSIFT SMLM, respectively. The mean
average precision (MAP) is used to evaluate these methods.
The comparison results are illustrated in Table I. One can
see that the proposed MMLM is superior to the single met-
ric learning model. Compared to the single metric learning
model, the deep multi-metric learning model can exploit the
complementary information of multiple types of shape features
to characterize 3D shapes better. In addition, for the learned
single distance metric, we can see that WKS SMLM is better
than SI-HKS SMLM and LDSIFT SMLM. This implies that
WKS is more discriminative to characterize 3D shapes.

TABLE I
EVALUATION OF THE PROPOSED MMLM AND THE LEARNED SINGLE

DISTANCE METRIC.

Methods Mean average precision (MAP)
SI-HKS SMLM 0.831

WKS SMLM 0.883
LDSIFT SMLM 0.745

MMLM 0.937

2) Comparison to the fused multiple shape features: We
also compare our proposed MMLM method to the fused multi-
ple shape features without applying the developed deep multi-
metric network. In this evaluation, we employ the LLC method
to encode the SI-HKS, WKS and LDSIFT features of each ver-
tex on 3D shapes. The formed multiple global shape features
are denoted by SI-HKS LLC, WKS LLC and LDSIFT LLC,
respectively. The three types of shape features are fused by the
weighted Euclidean distances, λ1d1+λ2d2+(1−λ1−λ2)d3,
where λ1 and λ2 are the weights, d1, d2 and d3 are the



7

Fig. 2. The airplane models in the PSB dataset.

Fig. 3. Ten classes of 3D models in the McGill shape dataset.

(a)

(b)

Fig. 4. (a) shows the simulated isometry, isometry+topology, topology, partiality and triangulation transformations while (b) shows the unrelated example
shapes in the SHREC’10 ShapeGoogle dataset.

Euclidean distances between the SI-HKS LLC, WKS LLC
and LDSIFT LLC features, respectively. Parameters λ1 and λ2
are determined from 0.001 to 1 with step 0.003 on the training
dataset. Fig. 6 shows the precision-recall curves for the fused
multiple shape features without using the deep multi-metric
network and the proposed MMLM method. As can be seen
in this figure, the proposed MMLM method can significantly
improve the retrieval performance, which implies that by
mapping the multiple shape features to the non-linear feature
spaces with the deep metric network, they can characterize 3D

shapes better.

C. Comparison Evaluation

1) PSB dataset: For the PSB shape dataset, the training
subset is used to train the proposed multi-metric network and
the testing subset is used to evaluate the MMLM method. We
compare our proposed MMLM method to the following 3D
shape retrieval methods: the hybrid 2D/3D approach [46], the
Bag of Visual Feature method (BoVF) [8], Compact multiview
descriptor (CMVD) [47], 3D CNN [25] and GIFT [24]. We
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(a)

(b)

Fig. 5. (a) and (b) show the synthetic and scanned example shapes of human bodies with different poses in the SHREC’14 Human dataset, respectively.

Recall
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Fig. 6. The precision-recall curves for the fused multiple shape features
without using the deep multi-metric network and the proposed MMLM
method on the McGill shape dataset.

use the Nearest Neighbor (NN), the First Tier (FT), the Second
Tier (ST) and the Discounted Cumulative Gain (DCG) to
evaluate these methods. The comparison results are listed
in Table II. From this table, one can see that the proposed
MMLM method can yield good performance. Particularly, by
fusing multiple learned shape features, the proposed MMLM
method is slightly higher than the deep learning based shape
retrieval methods [24, 25] in terms of the NN and FT criteria.

TABLE II
RETRIEVAL RESULTS ON THE PSB DATASET.

Methods NN FT ST DCG
BoVF [8] 0.481 0.253 0.345 0.527

Hybrid 2D/3D [46] 0.742 0.473 0.606 -
CMVD [47] 0.566 0.286 0.367 0.564

3D CNN [25] 0.901 0.639 0.849 0.841
GIFT [24] 0.849 0.712 0.830 -
MMLM 0.911 0.720 0.831 0.863

2) McGill shape dataset: For the McGill shape dataset, 10
shapes per class are chosen as the training samples to train the
proposed deep multi-metric network. The remaining samples
per class are used to test. All experiments are repeated over
20 times to report the retrieval performance. We compare
our proposed MMLM method to the state-of-the-art shape
retrieval methods: learning based covariance descriptor [31],
Graph based method [48], the PCA based VLAT method [49],
the Hybrid BOW [50], the hybrid 2D/3D approach [46], the
manifold ranking method (MR) [15], the discriminative auto-
encoder method (DA) [12]. Particularly, in [15, 31, 46, 50],
multiple shape features are employed to represent 3D shapes.
The Euclidean distance is used as the similarity between the
shape features for retrieval in [31, 46, 50] while in [15] the
manifold ranking based metric learning method is employed
to learn the distance metric for retrieval.

The retrieval performance of these methods is illustrated
in Table III. As can be seen in this table, in terms of
the evaluation criteria FT, ST and DCG, compared to these
methods, the proposed MMLM method can achieve the best
performance. It is noted that, although in the Hybrid BOW
method [50], the hybrid 2D/3D approach [46] and the manifold
ranking method [15], different types of shape features are
fused for shape retrieval, the discriminative information and
the complementary information of multiple shape features are
not fully exploited. In our proposed MMLM method, multiple
shape features are mapped to the non-linear feature spaces
with the developed multi-metric network, where for each type
of learned deep shape feature the within-class variation is
required to be as small as possible and the between-class vari-
ation to be as large as possible while multiple types of learned
deep shape features are enforced to be as complementary as
possible. Therefore, the distances between multiple types of
learned deep shape features is more effective for retrieval.
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TABLE III
RETRIEVAL RESULTS ON THE MCGILL DATASET.

Methods NN FT ST DCG
Covariance descriptor [31] 0.977 0.732 0.818 0.937
Graph based method [48] 0.976 0.741 0.911 0.933
PCA based VLAT [49] 0.969 0.658 0.781 0.894

Hybrid BOW [50] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [46] 0.925 0.557 0.698 0.850

MR [15] - 0.903 - -
DA [12] 0.988 0.812 0.934 -
MMLM 0.971 0.916 0.991 0.973

3) SHREC’10 ShapeGoogle dataset: For the SHREC’10
ShapeGoogle dataset, the dictionary learning and discrimina-
tive auto-encoder based shape retrieval methods are involved
to compare: the vector quantization based BOW method (VQ)
[10], the unsupervised dictionary learning method (UDL)
[11], the supervised dictionary learning method (SDL) [11]
and the discriminative auto-encoder method (DA) [12]. All
experiments are repeated over 20 times. Comparison results
with the mean average precision are listed in Table IV.
From this table, one can see that in the cases of the five
simulated transformations, our proposed MMLM method is
comparable or superior to these methods. For example, in
the cases of isometry+topology, partiality and triangulation
transformations, our proposed MMLM method can obtain the
accuracies of 0.988, 0.985 and 0.963 while the DA method
[12] can obtain the accuracies of 0.982, 0.973 and 0.955.

In the vector quantization based BOW method [10], the
similarity sensitive hashing (SSH) method is used to learn
a linear distance metric between the shape descriptors for
retrieval, which maps the BOW shape feature to a linear
feature space. Nonetheless, the transformed linear feature
space cannot handle the large non-rigid deformations of 3D
shapes. In the proposed MMLM method, we employ the deep
neural network to non-linearly map the 3D shape features to
the non-linear feature space. Different from the learned linear
distance metric, with the developed multi-metric network, we
can learn multiple non-linear distance metrics from multiple
types of shape features. Moreover, the learned multiple non-
linear distance metrics are adaptively fused for retrieval.

TABLE IV
RETRIEVAL RESULTS ON THE SHREC’10 SHAPEGOOGLE DATASET.

Transformation VQ [10] UDL [11] SDL [11] DA [12] MMLM
Isometry 0.988 0.977 0.994 0.998 1.000
Topology 1.000 1.000 1.000 0.996 1.000

Isometry+Topology 0.933 0.934 0.956 0.982 0.988
Partiality 0.947 0.948 0.951 0.973 0.985

Triangulation 0.954 0.950 0.955 0.955 0.963

4) SHREC’14 Human dataset: We evaluate our proposed
MMLM method on the synthetic sub-dataset and the scanned
sub-dataset. For the synthetic sub-dataset, 10 shapes per class
are used to train and the other shapes per class are used for
testing. For the scanned sub-dataset, 5 shapes per class are
used to train and the rest of shapes are used to test. The
experiments are repeated over 20 times. The mean average
precision is used as the evaluation criterion. The recent shape
retrieval methods on the two sub-datasets are involved to
compare: reduced Bi-harmonic distance matrix (RBiHDM)

[51], intrinsic pyramid matching (ISPM) [52], Histogram of
area projection transform (HAPT) [53], deep belief network
(DBN) [45], the standard vector quantization method (VQ)
[10], the unsupervised dictionary learning method (UDL) [11]
and the supervised dictionary learning method (SDL) [11]. The
experimental results are listed in Table V. As can be seen in
this table, for the synthetic sub-dataset, compared to the state-
of-the-art methods [10, 11, 45, 51–53], our proposed MMLM
method can obtain the best performance. Compared to the
synthetic sub-dataset, the scanned human shape sub-dataset
consists of more human models and is more challenging. On
this sub-dataset, the retrieval performance of our proposed
MMLM is slightly higher than that of the SDL method and is
far more superior to the other methods [10, 45, 51–53].

TABLE V
RETRIEVAL RESULTS ON THE SHREC’14 HUMAN DATASET.

Method Synthetic model Scanned model
HAPT [53] 0.817 0.637
ISPM [52] 0.92 0.258

RBiHDM [51] 0.642 0.640
DBN [45] 0.842 0.304
VQ [10] 0.813 0.514

UDL [11] 0.842 0.523
SDL [11] 0.951 0.791
MMLM 0.983 0.815

D. Discussion

In this subsection, we perform the sensitivity analysis of
our proposed MMLM method with respect to parameter λ in
Eq. (5). Parameter λ controls the balance between discrim-
ination and complementarity of the learned shape features.
We conduct experiments on the McGill shape dataset in the
cases of different λ. For each class, 10 shapes are chosen
as the training samples and the remaining shapes are used
as the testing samples. The MAP is used to evaluate the
proposed MMLM method. The MAPs of the proposed MMLM
method in the cases of different λ are shown in Fig. 7, where
parameter λ is empirically selected from 0.01 to 0.13 with
step 0.005. From this figure, one can see that λ ranging from
0.06 to 0.09 has few effects on the final retrieval performance.
Nonetheless, if λ is too small or large, discrimination and
complementarity of the outputs of multiple metric networks
cannot be kept simultaneously. Thus, the learned multiple
shape features cannot represent 3D shapes well. Therefore,
in our comparison evaluation, λ is set to 0.06 to train our
proposed deep multi-metric learning model.

V. CONCLUSIONS

In this paper, based on multiple types of shape features,
we proposed a deep multi-metric learning method for 3D
shape retrieval. We exploited the non-linearity of the deep
neural network and the complementarity of multiple shape
features to develop a multi-metric network. With the developed
multi-metric network, multiple non-linear distance metrics are
learned so that for each type of shape feature the variations
of outputs from the same class are minimized and the varia-
tions of outputs from different classes are maximized while
dependence of multiple shape features is minimized. The



10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Parameter λ

M
A

P

Fig. 7. The MAPs of the proposed MMLM method in the cases of different
λ on the McGill shape dataset.

fused distance metric with the learned weights is used as the
similarity for shape retrieval. Experiments on the PSB, McGill,
SHREC’10 ShapeGoogle and SHREC’14 Human datasets
demonstrate that the proposed method can yield good retrieval
performance.
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