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Deep Correlated Holistic Metric Learning for
Sketch-Based 3D Shape Retrieval

Guoxian Dai, Jin Xie, and Yi Fang

Abstract— How to effectively retrieve desired 3D models with
simple queries is a long-standing problem in computer vision
community. The model-based approach is quite straightforward
but nontrivial, since people could not always have the desired
3D query model available by side. Recently, large amounts of
wide-screen electronic devices are prevail in our daily lives, which
makes the sketch-based 3D shape retrieval a promising candidate
due to its simpleness and efficiency. The main challenge of sketch-
based approach is the huge modality gap between sketch and 3D
shape. In this paper, we proposed a novel deep correlated holistic
metric learning (DCHML) method to mitigate the discrepancy
between sketch and 3D shape domains. The proposed DCHML
trains two distinct deep neural networks (one for each domain)
jointly, which learns two deep nonlinear transformations to
map features from both domains into a new feature space.
The proposed loss, including discriminative loss and correlation
loss, aims to increase the discrimination of features within each
domain as well as the correlation between different domains.
In the new feature space, the discriminative loss minimizes the
intra-class distance of the deep transformed features and maxi-
mizes the inter-class distance of the deep transformed features
to a large margin within each domain, while the correlation
loss focused on mitigating the distribution discrepancy across
different domains. Different from existing deep metric learning
methods only with loss at the output layer, our proposed DCHML
is trained with loss at both hidden layer and output layer to
further improve the performance by encouraging features in the
hidden layer also with desired properties. Our proposed method
is evaluated on three benchmarks, including 3D Shape Retrieval
Contest 2013, 2014, and 2016 benchmarks, and the experimental
results demonstrate the superiority of our proposed method over
the state-of-the-art methods.

Index Terms— Sketch-based 3D shape retrieval, deep corre-
lated holistic metric learning, discrepancy across different
domains, mitigate.

I. INTRODUCTION

W ITH the advanced development of digitalization tech-
niques, 3D models are widely available in our daily

lives across many areas, such as 3D printing, medical imaging
and entertainment. The vast amounts of 3D model lead to
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the pressing demand for effectively searching the desired 3D
models. Traditional text-based search could not work well for
two main reasons, 1) Only a small number of 3D models
are available with text descriptions, which is too limited
to retrieve desired 3D models. 2) It is often very hard to
describe the very detailed information of complex 3D models
simply with texts. Therefore, researchers proposed content-
based 3D model retrieval framework, which mainly includes
two categories, example-based 3D shape retrieval and sketch-
based 3D shape retrieval. Most of the existing works fall into
the first group, which is provided with a query 3D model
and returns similar models [1]–[7]. Example-based 3D shape
retrieval is quite straightforward, however, not convenient,
since people usually don’t always have the desired 3D model
query available before hand. Recently, the sketch-based 3D
shape retrieval has received more and more attentions from
computer vision and computer graphics community [8]–[11].
Compared to the example-based framework, the sketches are
much more convenient and easier to get, even a young kid
could draw simple and comprehensive sketches. Apart from
simpleness, sketch is also informative since it is very easy for
people to understand the class labels for simple query sketches.

Despite all the advantages of sketch-based 3D shape
retrieval, actually, it is a quite challenging problem. First,
sketch and 3D shape come from two different modalities with
huge gap. And features extracted from both modalities follow
quite different distributions, which makes it very difficult to
directly retrieve 3D shapes from sketch queries. Secondly,
sketches are usually very simple with only several lines.
The simpleness, on the contrary, also makes the sketch contain
very limited information. The 3D shapes look visually similar
as the query sketches only from some certain view angles.
Generally, it is very hard to find the “best views” to project
3D shapes, which makes both sketches and 3D shapes similar.

The main challenge for sketch-based 3D shape retrieval
is the domain discrepancies between these two modalities.
In this work, we proposed a novel deep correlated holistic
metric learning (DCHML) method to mitigate the discrep-
ancies between sketch and 3D shape domains. Specifically,
we first extract low-level features for both sketches and 3D
shapes. For 2D sketch, we use pre-trained AlexNet [12] to
extract features; for 3D sketch, we extracted histogram of
oriented distance (HOD) in [13]; for 3D shape, we extract
3D-SIFT feature [14], which is extended from the well-known
2D SIFT [15]. The extracted 3D-SIFT is further encoded by
locality-constrained linear coding (LLC) [16] to get a global
shape descriptor. Then we learn two deep neural networks
to transform the raw features of both domains into a new

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9427-3883


DAI et al.: DCHML FOR SKETCH-BASED 3D SHAPE RETRIEVAL 3375

feature space, mitigating the domain discrepancy as well
as maintaining the discrimination. The loss of the proposed
network includes two parts, discriminative term which is
constructed with pairwise distance within each domain and
correlation term which is constructed with pairwise distance
across different domains. The former one minimizes the vari-
ations of the deep learned features from the same class and
maximizes the variations of the deep learned features from
different classes within each domain; the latter one aims to
alleviate the domain discrepancy, making the distributions of
features from both domains as consistent as possible. Apart
from adding the proposed loss at the output layer, similar
loss is also imposed at the hidden layer to guide features
in hidden layer also with desired properties. And it could
further increase the robustness of deep learned features at
the output layer. We verify our proposed method on three
large scale benchmarks, 3D Shape Retrieval Contest (SHREC)
2013, 2014 and 2016 benchmarks, and the experimental results
demonstrate the superiority of our proposed method.

This work is an extended version of conference paper [17].
There are three main differences against the conference
version [17]: 1) We impose additional loss at the hidden
layer to help the convergence of training and improve the
retrieval performance. 2) We did more experiments to verify
the proposed methods, including sketch-sketch within-domain
retrieval and retrieval on SHREC 2016 dataset. 3) We also
add one more subsection to discuss the effects of different
parameter settings to the final retrieval performance.

The main contribution of our work is that we develop
a novel deep correlated holistic metric learning method for
sketch-shape cross-domain retrieval, which jointly trains two
deep neural networks to learn two deep nonlinear transforma-
tions, one for each domain. Most of the existing deep metric
learning methods focus on one domain applications. Different
from those methods, we propose a correlation loss based deep
metric learning to learn discriminative and consistent features
across different domains. The proposed method can be viewed
as an extension of classic deep metric learning methods. Here,
the “holistic” means the proposed loss is not only imposed
at the output layer but also at the hidden layer. By forcing
features in the hidden layer are discriminative within each
domain and consistent across different domains, the features at
the output layer could become more discriminative and consis-
tent. And the sketch-shape cross-domain retrieval performance
could be further improved.

The rest of the paper is organized as follows. In Section II
we introduce the related work; In Section III, we present
our proposed deep correlated holistic metric learning for
sketch-based 3D shape retrieval; In Section IV, we show the
experimental results of our proposed method on three well-
known large scale benchmarks; In Section V, we conclude
our work.

II. RELATED WORK

Most of the existing works about 3D shape retrieval is the
example-based framework [1], [3], [5]–[7], [18]–[32], which
could be roughly classified into three categories, projection
based methods, diffusion based methods and deep learning

based methods. For the projection based methods, 3D shapes
are projected into 2D images, so that classic image features
are adopted to construct shape descriptor, such as LFD [2] and
ED [33]. For the diffusion based methods, 3D shape descrip-
tors are derived based on heat diffusion or probability distri-
bution of quantum particles, such as HKS [23], SIHKS [34]
and WKS [35]. All the aforementioned methods are just hand-
crafted, inspired by the great success of deep learning in 2D
images areas, deep learning is also introduced to 3D areas
for shape retrieval [6], [7], [30], [31]. Xie et al. [7] use
discriminative auto-encoder to extract robust shape descriptor
in the hidden layers. Bai et al. [30] adopts convolutional neural
network on the depth projections of 3D model to learn shape
descriptor. Bai et al. [31] also proposed a two layer encoding
framework for 3D shape matching. In addition, Shi et al. [36]
adopted a cylinder projection and row-wise max-pooling to
learn a robust 3D shape representation.

Except for the example-based framework, the sketch-based
framework is another promising candidate for retrieving
desired 3D shapes. Currently, there are very few works about
sketch-based 3D shape retrieval. Zhu et al. [37] adopted
a cross-domain neural network to mitigate the discrep-
ancy between sketch and 3D shape. Funkhouser et al. [38]
used spherical harmonics to compare similarities of different
models, and designed a search engine supporting 3D models
and 2D sketches as queries. Daras and Axenopoulos [39]
proposed a unified 3D shape retrieval system supporting
multimedia queries by projecting 3D models into a group
of 2D images. The similarities among different models are
determined by features extracted from 2D images. Bron-
stein et al. [26] applied bag-of-features (BoF) [40], which
was widely used in 2D computer vision, for 3D shape
retrieval. In addition, Eitz et al. [8] further adopted BoF
with Gabor local line based feature (GALIF) for sketch-
based 3D shape retrieval. Apart from BoF encoding scheme,
locality-constrained linear coding (LLC) [16] is another
encoding scheme widely applied in image classification,
by maintaining the locality property. Biasotti et al. [41]
applied LLC scheme for textured 3D shape retrieval. Tasse
and Dodgson [42] proposed a novel cross-domain retrieval
method by embedding different modality samples into the
semantic vector representation of shape class. Xie et al. [43]
proposed to learn a barycenter, which could effectively
aggregate features from different 2D projections of 3D
shapes. Apart from the aforementioned algorithms, large
scale datasets have also been recently proposed to eval-
uate the performance of different methods, such as SHREC
2013 [11], [44] and SHREC 2014 [45], [46]. Sketches
of both datasets come from a latest large sketch collec-
tion [47]. The 3D shapes of SHREC 2013 are mainly
collected from Princeton Shape Benchmark [3], while the
shapes of SHREC 2014 come from various sources, such
as [3], [48]–[50]. Different comparison results are reported
for both datasets. For SHREC 2013, the best reported result
in [44] is from view clustering and shape context matching
(SBR-VC). For SHREC 2014, the best reported result in [46]
is from overlapped pyramid of HOG and similarity constrained
manifold ranking, by Tatsuma et al.



3376 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 7, JULY 2018

Fig. 1. The detailed framework of our proposed deep correlated holistic metric learning network. The whole network structure mainly includes two components,
source domain network and target domain network. The proposed loss function is imposed at both output layer and hidden layer.

Recently, deep metric learning has received more and more
attentions from computer vision community. Compared to
traditional metric learning with a simple linear transforma-
tion [51]–[53], deep metric learning inherits advantages from
the existing deep learning techniques [12], [54], [55] and
could learn much more complex, powerful nonlinear trans-
formation. Chopra et al. [56] adopts Siamese network to learn
image similarities for face verifications. Generalizing the ideas
in both [56] and large margin distance metric learning [57],
Hu et al. [58] proposed a discriminative deep metric learning
for face verification, with a marginal distance between positive
pair and negative pair. Instead of randomly selecting training
pairs in [58], Song et al. [59] considers all the possible positive
pairs and negative pairs in the training set for deep metric
learning. Different from deep metric learning with Siamese
network in [56] and [58], which adopts pairwise training
strategy with two input samples, Hoffer and Ailon [60] adopts
triplet network for deep metric learning, which uses three iden-
tical networks with three input examples, one base example,
its positive example and negative example. All the above
deep metric leaning methods assume that training and testing
examples follow the same distributions, which is actually too
restricted for real applications. Thus, Hu et al. [61] proposed a
deep transfer learning to deal with this scenario, by imposing
maximum mean discrepancy criterion [62], [63] at the hidden
layer of network. Lee et al. [64] and Xie and Tu [65] also

imposed additional losses at the hidden layer of network
to boost the performance of image classification and edge
detection. Except for the application of deep metric learning
in 2D image areas, it is also introduced to 3D shape
areas [66]–[68]. Wang et al. [68] extended the Siamese
network for sketch-based 3D shape retrieval by using two
based Siamese networks, one for sketch domain and one
for 3D shape domain. Their method is based on a strong
assumption that all the 3D models are stored upright, which
makes it much easier to choose the project view of 3D model.
Such assumption can hardly be guaranteed in real application,
and without such assumption, it is actually very hard to choose
the “best” projection view. The projection results could change
greatly, as the view changes.

It is noted that there are three works, which are most
related to our proposed method, including DCML [17],
Wang et al. [68] and Shape2Vec [42]. DCML [17] is a
prepliminary version of the proposed method. Compared to
DCML, we imposed additional loss at the hidden layers,
which could not only make the training process converge
faster, but also improve the performance. Wang et al. [68]
used similar framework as our proposed method, by extending
Siamese network [56], [69] for sketch-based 3D shape
retrieval. There are several differences between [68] and our
proposed method, 1) [68] needs to project 3D model into two
different views with a strong assumption that all models are
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stored upright as default. In fact, the projection results could
change dramatically as the projection view changes. However,
our proposed method doesn’t need projection, neither does
the upright assumption. 2) We put a marginal distance
between examples from different classes, similar as [58],
while [68] does not embed marginal distance for metric
learning. 3) Wang et al. [68] only imposed loss at the output
layer, while our proposed method adds loss on both the output
and hidden layers to learn more robust features for retrieval.
Similar to the proposed method, Shape2Vec [42] also mapped
samples into a new feature space. The key difference is that
Shape2Vec explicitly used semantic vector representation of
shape class as target vector. However, the proposed method
learn the target vector from data, which could generalize better
from unseen class examples, compared to Shape2Vec.

III. METHOD

We proposed a novel deep correlated holistic metric learning
method for sketch-based 3D shape retrieval. Fig. 1 shows the
detailed framework of our proposed method. The proposed
networks consist of two components, one for sketch domain,
referred as source domain network (SDN), and one for 3D
shape domain, referred as target domain network (TDN).
The proposed method trains both deep neural networks simul-
taneously with proposed loss at both output layer and hidden
layer. The loss function includes two terms, discrimina-
tion term and correlation term, which minimizes intra-class
variations and maximizes inter-class variations within each
domain, meanwhile guarantees the distribution-consistency
across different domains.

The proposed method mainly includes two steps:
1) extracting low-level features for both sketches and
3D shapes. 2) Learning two deep nonlinear transforms to
map features of both domains from the original space into
a nonlinear feature space, increasing the discrimination
of features within each domain as well as mitigating the
discrepancy across different domains. The details for each
step are introduced as follows.

A. Feature Extraction

Features for both sketches and shapes are extracted sepa-
rately.

1) Sketch: Our proposed method is verified with both 2D
sketch query and 3D sketch query. For 2D sketch, inspired
by the outstanding performance of convolutional neural
network (CNN) in feature learning [12], [55], [70], we fine-
tune AlexNet [12] on sketch dataset. The AlexNet mainly
includes 5 convolutional layers and 3 fully connected layers.
After fine-tuning, we extract the visual features in “fc7” layer.
The feature dimension is 4096. For 3D sketch, we extracted
histogram of oriented distance (HOD) in [62].

2) 3D Shape: Inspired by Lowe’s SIFT [15] in 2D
images, [14] extended it into 3D mesh and proposed 3D-
SIFT by detecting interest points. We first extract 3D-SIFT
for 3D shapes, which are further encoded with the LLC [16]
scheme to get a global shape descriptor. Readers could refer
to [14] and [16] for more detailed information about 3D-SIFT
and LLC.

B. Deep Correlated Holistic Metric Learning

We denote training examples from source domain
(sketch domain) and target domain (3D shape domain)
as S = {x1, x2, x3, . . .} and T = {y1, y2, y3, . . .}, respectively.
The transfer functions for SDN and TDN are denoted as
f s : x → f s(x) and f t : y → f t (y), respectively. In addition,
W s

k , W t
k and bs

k , bt
k are the weights and bias, connecting layer k

and layer k +1 of SDN and TDN, respectively; the activations
of the i -th example xi from S and j -th example y j from T at
the k-th layer of SDN and TDN are denoted as ai,s

k and a j,t
k ,

respectively,

ai,s
k+1 = σ(W s

k ai,s
k + bs

k) = σ(r i,s
k+1)

a j,t
k+1 = σ(W t

k a j,t
k + bt

k) = σ(r j,t
k+1) (1)

where σ(x) is the sigmoid function σ(x) = 1
1+e−x , r i,s

k+1 =
W s

k ai,s
k + bs

k , r j,t
k+1 = W t

k a j,t
k + bt

k . Ks and Kt denotes
the total number of layers for SDN and TDN, respectively.
Thus, the nonlinear transfer function f s(xi ) and f t (y j ) across
Ks and Kt layers of SDN and TDN respectively, can be
represented as follows,

f s(xi) = ai,s
Ks

f t (y j ) = a j,t
Kt

. (2)

The features sampled from different domains, sketch and 3D
shape, suffer the domain discrepancy. Such discrepancy makes
it very difficult to directly conduct across-domain retrieval.
To effectively perform cross-domain retrieval, the features
from both domains should address the following two issues:
1) within each domain, the features should be as discriminative
as possible, 2) across different domains, the distributions of
features from both domains should be as consistent as possible.
To this end, we proposed a novel deep correlated holistic
metric learning method to mitigate the discrepancy across
different domains as well as increase the discrimination within
each domain. The proposed method learns two distinct deep
neural networks (different weights and different structures)
simultaneously to transform features from both domains into
a nonlinear feature space. The proposed loss includes two
terms, discriminative loss and correlation loss. For each loss
term, it is not only imposed on the output layer but also the
hidden layer to guarantee features in both output layer and
hidden with desired properties. And it could further improve
the performance, compared to only imposing loss at output
layer. The proposed loss function L is formulated as follows,

L = αLd + (1 − α)Lc + λ(

Ks∑

i=1

‖W s
i ‖2

F +
Kt∑

j=1

‖W t
j ‖2

F )

= α
(
βLd

h + (1 − β)Ld
o

) + (1 − α)
(
βLc

h + (1 − β)Lc
o

)

+ λ(

Ks∑

i=1

‖W s
i ‖2

F +
Kt∑

j=1

‖W t
j ‖2

F ) (3)

where Ld denotes the discriminative loss, including losses at
both the output layer Ld

o and hidden layer Ld
h . And Lc denotes

the correlation loss, including losses at both the output layer
Lc

o and hidden layer Lc
h . Ld

o and Ld
h aim to minimize intra-class

distance of deep transformed features and maximize inter-class
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distance of deep transformed features to a large margin h
within each domain for both output layer and hidden layer
respectively. And Lc

o and Lc
h optimize the pairwise across-

domain distance to mitigate the distribution inconsistency
across different domains for both output layer and hidden layer
respectively. α is the weight to balance between discrimination
term and correlation term. β is the weight to balance between
hidden layer loss and output layer loss. λ is the weight for
regularization term, avoiding over-fitting.

1) Discrimination Term: The discrimination term aims
to minimize intra-class distance and maximize inter-class
distance within each domain. To guarantee the deep learned
feature as discriminative as possible, we not only impose
discriminative loss at the output layer but also the hidden layer
of the network, including Ld

o and Ld
h , respectively. For each

term, the discriminative loss includes two parts for both source
domain and target domain respectively.

Ld
o = Ld

o,s + Ld
o,t

Ld
h = Ld

h,s + Ld
h,t . (4)

where Ld
o,s and Ld

o,t denote the discriminative loss at the output
layer for both source domain and target domain, respectively.
While Ld

h,s and Ld
h,t denote the discriminative loss at the

hidden layer for both source domain and target domain,
respectively.

For the positive pair examples, their distances are mini-
mized; for negative pair examples, their distances are maxi-
mized to a large margin. Thus, Ld

o,s and Ld
o,t are formulated

as follows,

Ld
o,s =

∑

xi ,x j ∈Ps

‖ai,s
Ks

− a j,s
Ks

‖2
2

+
∑

xi ,x j∈Ns

max{0, βo − ‖ai,s
Ks

− a j,s
Ks

‖2
2} (5)

Ld
o,t =

∑

yi ,y j ∈Pt

‖ai,t
Kt

− a j,t
Kt

‖2
2

+
∑

yi ,y j∈Nt

max{0, βo − ‖ai,t
Kt

− a j,t
Kt

‖2
2} (6)

where Ps and Ns denote the sets of positive pair and
negative pair in source domain S, respectively. While Pt

and Nt denote the sets of positive pair and negative pair
in target domain T . βo is the marginal distance for negative
pair at the output layer.

Assume the discriminative loss is imposed at the Hs-th
and Ht -th hidden layer of both source domain and target
domain networks. Thus, Ld

h,s and Ld
h,t could be formulated

similarly.
The overall discriminative loss Ld is imposed at both the

output layer and hidden layer of the network, which aims
to minimizes intra-class distance and maximizes inter-class
distance to a large margin within both source and target
domains. Through imposing discriminative loss at the hidden
layer, the features in the hidden layers are encouraged to be
discriminative, which could help improve the discriminative
property of features at the output layer.

2) Correlation Term: Features from both domains follow
different distributions, which makes it hard to directly retrieve
desired objects across different modalities. Thus, a correlation
term is further imposed to maintain the distribution consistency
across different domains. The correlation term is the key part
to build the connections between sketch domain and 3D shape
domains, which is constructed with pairwise distance across
different domains. Specifically, the correlation term includes
two types of pairwise across-domain distances. Similar as the
discriminative loss, the correlation loss is also imposed at both
the output layer and hidden layer of the networks, Lc

o and Lc
h ,

Lc
o = Lc

o,1 + Lc
o,2

Lc
h = Lc

h,1 + Lc
h,2 (7)

where Lc
o,1 and Lc

o,2 denote the pairwise across-domain
distance at the output layer, which could be formulated as
follows,

Lc
o,1 =

∑

xi ,y j∈Pc

‖ai,s
Ks

− a j,t
Kt

‖2
2

+
∑

xi ,y j ∈Nc

max{0, βo − ‖ai,s
Ks

− a j,t
Kt

‖2
2}

Lc
o,2 =

∑

cs ,ct

∑

∀xi ,x j ∈cs

∀yi ,y j ∈ct

R(xi , x j , yi , y j )

−
c �=d∑

cs ,dt

∑

∀xi ,x j ∈cs

∀yi ,y j∈dt

R(xi , x j , yi , y j ) (8)

where Pc and Nc denote the sets of positive pairs and negative
pairs across different domains. Lc

1 directly minimizes the
distances of positive pair across-domain examples, and maxi-
mizes the distances of negative pair across-domain examples
to a large margin h, making the distributions of two domains
as similar as possible. cs and ct denote the set of examples
with class label c for source domain and target domain respec-
tively. Except for Lc

o,1, Lc
o,2 is further imposed to guarantee

the distribution-consistency across different domains. R are
formulated as follows,

R(xi , x j , yi , y j ) =
(√

‖ai,s
Ks

−a j,s
Ks

‖2
2 −

√
‖ai,t

Kt
−a j,t

Kt
‖2

2

)2
(9)

In Lc
o,2, xi and x j are from the same class, so do yi

and y j . R(xi , x j , yi , y j ) is constructed as the difference
between within-class distances across two domains. Although
in Lc

o,1 the outputs of two networks with the same label,

i.e., ai,s
Ks

and a j,t
Kt

, are enforced to be near, it cannot guarantee

that the local neighborhood structures of ai,s
Ks

and a j,t
Kt

are
also similar in the high-dimensional feature space. Therefore,
we define R(xi , x j , yi , y j ) to describe the similarity between
the local neighborhood structures of ai,s

Ks
and a j,t

Kt
so that the

distributions of the samples with the same label are consistent
across two domains. If (xi , x j , yi , y j ) are with the same
label, R is minimized to encourage the local neighborhood
structures of ai,s

Ks
and a j,t

Kt
to be similar, increasing the asso-

ciation between two domains. Otherwise, R is maximized to
encourage the local neighborhood structures of ai,s

Ks
and a j,t

Kt
to
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be dissimilar, decreasing the association between two domains.
In addition, the correlation losses at hidden layers, Lc

h,1
and Lc

h,2 could be formulated similarly.
The main idea of imposing additional loss at hidden layer

is that the performance of features at output layer could
be further improved by encouraging features in the hidden
layers also with desired property. By adding losses at hidden
layers, the training of the network could be guided from
early layer, apart from the output layer. Hence, we could
provide a much stronger supervision for training. The loss
error is not only back-propagated from the output layer, but
also from the hidden layer, which could avoid the vanishing
gradient problem and help the network converge stably. Each
term in the proposed loss function Eq. 3, is differentiable,
thus our proposed method could be optimized through back-
propagation with stochastic gradient descent. The gradients
come from two error paths, one is from the output layer and
one is from the H -th hidden layer. For the layers before H -th
layer, the gradients are summation from both paths, while for
the layers after H -th layer, the gradients are only from the
output layer.

IV. EXPERIMENTAL RESULTS

Our proposed method is evaluated on three well-known
benchmarks, SHREC 2013 [3], SHREC 2014 [45] and SHREC
2016 [13]. To verify the effectiveness of our proposed
method, we first compare the experimental results between
only imposing loss at output layer and imposing loss at
both output layer and hidden layer. In addition, we not
only conduct sketch-shape, cross-domain retrieval, but also
sketch-sketch, within-domain retrieval to comprehensively
evaluate the performance of our proposed method. Besides,
we also compared our proposed method with the state-of-the-
art methods using several common metrics, including nearest
neighbor (NN), first tier (FT), second tier (ST), discounted
cumulative gain (DCG) and mean average precision (mAP).
Precision-recall curve is also provided to visualize the perfor-
mance of our proposed method. Overall, the experimental
results demonstrate that our proposed method could outper-
form the state-of-the-art methods.

A. Implementation Details

In this subsection, we mainly introduce the implementa-
tion details for our proposed method. For feature extrac-
tion, the 2D sketch feature was extracted from the “fc7”
layer of AlexNet [12] with the feature size of 4096; the
3D sketch feature was extracted from histogram of oriented
distance (HOD) in [62], with the size of 320 = 64 × 5; the
feature size of 3D-SIFT for 3D shape is set to 128, in addition,
the size of the codebook for LLC is set to 4096, which is
generated by regular k-means. The network structures for the
sketch and 3D shape domains are set to [2000 1000 100]
and [2000 1000 500 100], respectively. The network structure
doesn’t include input layer size, which is determined by the
input feature size, for 2D sketch, it is set to 4096; for 3D
sketch, it is set to 320; for 3D shape is set to 4096. The loss

Fig. 2. Example of sketches and shapes from SHREC 2013 dataset.

Fig. 3. Precision-recall curves for imposing loss only at output layer and
imposing loss at both output layer and hidden layer on SHREC 2013.

is imposed at both output layer and hidden layer, specifi-
cally, the 3th hidden layers of SDN and TDN. In addition,
the momentum rate is set to 0.1, learning rate is set to 0.015.
The marginal distances for the output layer and hidden layer
are set to 3 and 50, respectively.

B. Retrieval on SHREC 2013 Dataset

In this section, we evaluate our proposed method on SHREC
2013 benchmark. SHREC 2013 [11], [44] is large scale
benchmark to evaluate algorithms for sketch-based 3D shape
retrieval. The benchmark is created by collecting common
classes from both the Princeton Shape Benchmark [3] and
sketch dataset [47]. Fig. 2 shows some examples of sketches
and shapes from SHREC 2013 dataset. There are 1258 shapes
and 7200 sketches in SHREC 2013, which are grouped into
90 classes in total. The number of shapes in each class is not
equal, about 14 in average. While the number of sketch for
each class is equal, 80 in total, 50 for training and 30 for
testing.

To demonstrate the effectiveness of our proposed method,
we first compare the experimental results between imposing
loss only at output layer, denoted as DCML, and imposing loss
at both output layer and hidden layer, denoted as DCHML.
Fig. 3 shows the precision-recall curves of both DCML and
DCHML. As we can see from Fig. 3, by imposing additional
loss at the hidden layer of the network, the performance could
be furhter improved, compared to only imposing loss at the
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Fig. 4. Illustration of retrieved examples on SHREC 2013 dataset. The query sketch is listed on the left first column, and the top 12 retrieved 3D models are
listed on the right side, according to their ranking orders. The correct retrieved examples are marked with blue color, while the incorrect retrieved examples
are marked with purple color.

output layer. The mAP is increased from 0.680 to 0.744, with
the gain of 0.064.

Fig. 4 shows some retrieved examples on SHREC
2013 dataset. The query sketches are listed on the left first
column, namely, head, fish, hand, airplane, dog, shovel, bicycle
and horse. The top 12 retrieved models are listed on the right
side, based on their ranking order. The correct retrieved models
are marked with blue color, while the wrong results are marked
with purple color. As we can see from Fig. 4, for the classes of
head, fish, hand and airplane, all the retrieved 12 models are
correctly relevant; for the classes of shovel, bicycle and horse,
the proposed method first retrieved correct examples, and then
wrong examples, because there are too few examples in these
three classes, less than 12. For the class, dog, the proposed
method mistakenly retrieved several wrong examples, due to
the geometrical similarity among these 3D shapes.

PCA is adopted to reduce the dimension of the deep learned
features from 100 to 2 for visualization, as shown Fig. 5.
All the features are grouped in different color by their class
labels. As we can see in Fig. 5, features with the same label
are grouped together, while features with different labels are
separated away. This is just a coarse visualization of our
proposed method, which could roughly verify the effectiveness
of our proposed method.

Precision-recall curve is a common metric to visu-
ally compare the retrieval performances of different algo-
rithms. Fig. 6 shows the precision-recall curves on SHREC
2013 dataset of our proposed method as well as state-of-the-
art methods reported in [11]. The magenta curve indicates
the performance of our proposed method. As we can see
in Fig. 6, our proposed methods could significantly outper-
form state-of-the-art methods. As the recall value increases,
the precision value of our proposed method stays at least

TABLE I

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS
ON SHREC 2013 DATASET

TABLE II

PERFORMANCE COMPARISON OF SKETCH-SKETCH RETRIEVAL
ON SHREC 2013 DATASET

double times higher than other methods, in addition, decrease
slower when recall is small. Except precision-recall curve,
we also compare the performance of our proposed methods
with state-of-the-art methods based on other standard metrics.
Table. I shows the comparison results on SHREC 2013 dataset.
As we can see in Table. I, the DCML without additional
loss at hidden layer could already outperform state-of-the-art
methods. The proposed DCHML could achieve even better
performance, about more than 30% gain in average compared
the best reported state-of-the art method [68]. The experi-
mental results demonstrate the effectiveness and superiority
of our proposed method.

To comprehensively verify the performance of the deep
learned features, we further conduct sketch-sketch (SS)
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Fig. 5. Visualization of the deep learned sketch features and shape features on SHREC 2013 dataset. The features are grouped in different colors by class label.

Fig. 6. Performance comparison of precision-recall curve on SHREC
2013 dataset.

retrieval within sketch domain. Table.II shows the performance
comparison between our proposed method with [68] based
on common evaluation metrics. Our proposed method could
significantly outperform [68] in all criterion. In addition,
we also compare the retrieval performance between sketch-
shape (SP) and sketch-sketch retrieval. Fig. 7 shows the
precision-recall curve for both sketch-shape and sketch-sketch
retrievals on SHREC 2013 dataset. Both tasks are using the
same query sketches, however, aiming for different target
outputs from two modalities. Intuitively, the latter one should
have better performance, since the sketch-sketch retrieval is
within-domain task, which is easier, compared to sketch-
shape across-domain task. The experimental results meet
expectations, as shown in Fig. 7. The precision value of

Fig. 7. Precision-recall curves of sketch-shape and sketch-sketch retrieval
on SHREC 2013 dataset.

sketch-sketch retrieval is steadily higher than sketch-shape
retrieval as the recall value increases. Besides, the mAP for
sketch-sketch retrieval is 0.787, while the mAP for sketch-
shape is only 0.744.

C. Retrieval on SHREC 2014 Dataset

In this subsection, we test our proposed method on SHREC
2014 dataset [45]. SHREC 2014 is a large scale benchmark for
sketch-based 3D shape retrieval, which consists of shapes from
various datasets, such as SHREC 2012 [48], the Toyohashi
Shape Benchmark (TSB) [49], the McGill 3D Shape Bench-
mark (MSB) [73], etc. The dataset has about 13680 sketches
and 8987 3D models in total, grouped into 171 classes.
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Fig. 8. Performance comparison between imposing loss only output layer
and imposing loss at both output layer and hidden layer on SHREC 2014.

Fig. 9. Performance comparison of precision-recall curve on SHREC
2014 dataset.

SHREC 2014 dataset is quite challenge due to its diversity
of categories and large variations within class. The number of
shapes in each class varies from less than 10 to more than
300, while the number sketches for each class is equal to 80,
50 for training and 30 for testing.

We first compare the experimental results between the loss
only at the output layer and the loss at both hidden layer and
output layer to demonstrate the effectiveness of imposing addi-
tional loss at hidden layers. Fig. 8 shows the precision-recall
curves of both methods. Through imposing additional loss
at hidden layer, The performance is significantly improved.
The precision value of DCHML is steadily higher than that
of DCML. In addition, the mAP is increased from 0.282 to
0.337, with the gain of 0.055.

Fig. 9 shows the precision-recall curves of our proposed
method with other state-of-the-art methods on SHREC
2014 dataset. The magenta curve denotes our proposed
method. As we can see in Fig. 9, when recall is about less
than 0.65, the precision of our proposed method is higher
than other methods; while when recall is about larger than
about 0.65, the precision of our proposed method drops below

TABLE III

PERFORMANCE COMPARISON OF DIFFERENT METHODS
ON SHREC’14 DATASET

Fig. 10. Precision-recall curve for sketch-shape and sketch-sketch retrieval
on SHREC 2014 dataset.

other method. In fact, people are generally more interested
in the top retrieved objects, instead of latter objects. Based
on such assumption, the precision-recall curve indicates the
advantages of our proposed method.

We also compare our proposed method with state-of-the-art
methods, based on other common evaluation metrics, such as
NN, FT, ST, DCG and mAP. Table. III shows the comparison
results of our proposed method and other methods on SHREC
2014 dataset. The DCML with proposed loss only at output
layer could already outperform other methods in all metrics.
The proposed DCHML could achieve even better performance.
The experimental results demonstrate the effectiveness of our
proposed method for sketch-shape across-domain retrieval.

In addition, we also conduct sketch-sketch retrieval on
SHREC 2014 to further verify the performance of our
proposed methods. Fig. 10 shows the precision-recall curve
of sketch-sketch (SS) retrieval and sketch-shape (SP) retrieval
on SHREC 2014 dataset. The precision-recall curve of SS
retrieval is significantly higher than that of SP retrieval, which
is reasonable, since sketch-sketch retrieval is a within-domain
task, while sketch-shape retrieval is a cross-domain task.
And the former one is easier compared to the latter one.
Besides, we also compare the sketch-sketch and sketch-shape
retrieval performance based on standard criterion, as shown
in Table. IV. The performance of SS retrieval could outperform
SP retrieval in all criterion.
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TABLE IV

PERFORMANCE COMPARISON BETWEEN SKETCH-SHAPE
AND SKETCH-SKETCH RETRIEVAL SHREC 2014 DATASET

Fig. 11. Examples of 3D sketches and shapes from SHREC 2016.

TABLE V

PERFORMANCE COMPARISON ON SHREC 2016 DATASET

D. Retrieval on SHREC 2016 Dataset

Different from SHREC 2013 and 2014 with 2D sketches,
SHREC 2016 is a new benchmark, which evaluates the perfor-
mance of different algorithms by using 3D sketch queries
to retrieve 3D shapes [13]. The 3D sketches of SHREC
2016 come from [74] and [75]. There are 300 3D sketches
in total, which are divided into 30 groups, For each group,
7 models are used for training, and 3 for testing. The 3D
models of SHREC 2016 come from SHREC13STB [44]. There
are 1258 models total, classified into 90 groups. The number
of shapes for each group is not equal, around 13 models
in average. Among the 30 classes of sketches, only 21 classes
have relevant 3D models. Fig. 11 shows some examples
of 3D sketch and shapes from SHREC 2016. As we can
see in Fig. 11, the 3D sketches are just sparse point cloud.
For 3D sketch, we extract raw feature, histogram of oriented
distances (HOD) [13]. Specifically, we choose 64 bins for
5 different angles. Table. V shows the performance comparison
between our proposed method and state-of-the-art methods.
As we can see from Table. V, our proposed DCHML could
outperform CNN-Siamese [13].

E. Parameter Discussion

In this section, we mainly discuss the effects of different
parameter settings to the experimental results, including α
and β. Specifically, We conduct experiments on SHREC
2013 to study the effects.

1) Parameter α: The proposed loss function mainly
includes two terms, discrimination term and correlation term.

Fig. 12. The mAP of the proposed method vs α.

And both losses are imposed at both the output layer and
hidden layer. The discrimination loss is built with pairwise
distance within each domain. And it is mainly used to make
features discriminative within each domain, which could be
trained independently for both domains. However, the corre-
lation loss is built with pairwise distance across different
domains, which is the key part to make the distribution
consistent across different domains. α is the weight to balance
between two terms. α denotes the weight of discrimination
loss, while 1−α denotes the weight of correlation loss. Fig. 12
shows the mAP vs. α. There are three main conclusions from
Fig. 12, 1) both terms are very essential in the proposed
methods, since the performance is very bad for α = 0 with
only the correlation term and α = 1 with only the discrim-
ination term. 2) The proposed method is very robust to α,
when α changes from 0.1 to 0.7. 3) The correlation term plays
a relatively more important role, compared to discrimination
term. For discrimination term, the weight of 0.1, is enough
to maintain the performance, however for for correlation
term, the weight is at least 0.3 to maintain the performance.
The experimental results suggests that we need to assign larger
weight to correlation term, compared to discrimination term.

2) Parameter β: Most of existing deep metric learning
methods only impose contrastive loss at the output layer of
the deep neural network. We impose the additional losses at
the hidden layer of the neural network, which could make
training converge faster and further increase the performance.
We did additional experiments to verify the effects of assigning
different weights to hidden layer loss and output layer loss.
β denotes the weight for hidden layer loss, while 1−β denotes
the weight for output layer loss. We change the balance weight
β from 0 to 1. The performance is shown in Fig. 13. When
β changes from 0 to 0.1, the mAP is creased from 0.67 to
0.74, which demonstrates that the additional hidden layer
loss could help improve the retrieval performance. When β
changes from 0.1 to 0.8, the mAP remains stable, which
indicates the robustness of our proposed method to β. Finally,
when β changes from 0.8 to 1, the performance begins to
drop, particularly when β ≥ 0.9, it decreases drastically.
The experimental results indicate that the weight for the output
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Fig. 13. The mAP of the proposed method vs. β.

layer should be larger, since it plays to key role for retrieval.
When the weight for the output layer loss is too small,
the networks almost learn nothing for the last few layers, thus
the performance is very bad for using the output features.

V. CONCLUSIONS

In this work, we developed a novel deep correlated holistic
metric learning for sketch-based 3D shape retrieval. Specif-
ically, we first extract raw features for both sketches and
3D shapes separately. Then features from both domains are
mapped into a new feature space through our proposed deep
correlated holistic metric learning network. The overall loss
function of the proposed networks mainly includes two terms,
discrimination term and correlation term. The former one
aims to minimize intra-class distance and maximize inter-
class distance to a large margin within each domain. While,
the latter one aims to maintain the distribution-consistency of
features across different domains. In addition, the proposed
loss is not only imposed at the output layer but also the
hidden layer. And the performance of features at the output
layer could be further improved by encouraging features
in the hidden layer also with desired properties. Our proposed
method is evaluated on SHREC 2013, 2014 and 2016, and the
experimental results demonstrate superiority over the state-of-
the-art methods.

Currently, the proposed method only focuses on two modal-
ities, sketch and 3D shape. One possible future direction
would be extending it to multi-modalities, such as sketch,
3D shape and depth image. The extension could be done by
simply constructing pairwise distances within each domain,
pairwise distance across all the different domains. Since gener-
ative adversarial networks (GANs) can maintain distributions
between two domains consistent, another interesting direction
would be combining GANs with the proposed method.
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