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Abstract

Effective and efficient texture feature extraction and classification is an important problem in image un-

derstanding and recognition. Recently, texton learning based texture classification approaches have been

widely studied, where the textons are usually learned via K -means clustering or sparse coding methods.

However, the K -means clustering is too coarse to characterize the complex feature space of textures, while

sparse texton learning/encoding is time-consuming due to the l0-norm or l1-norm minimization. Moreover,

these methods generally compute the texton histogram as the statistical features for classification, which

may not be accurate enough. This paper presents an effective and efficient texton learning and encoding

scheme for texture classification. First, a regularized least square based texton learning method is developed

to learn the dictionary of textons class by class. Second, a fast two-step l2-norm texton encoding method

is proposed to code the input texture feature over the concatenated dictionary of all classes. Third, two

types of histogram features are defined and computed from the texton encoding outputs: coding coefficients

and coding residuals. Finally, the two histogram features are combined for classification via a nearest sub-

space classifier. Experimental results on the CUReT, KTH TIPS and UIUC datasets demonstrated that

the proposed method is very promising, especially when the number of available training samples is limited.
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1. Introduction

Texture feature extraction and classification is an important research topic in many image processing,

computer vision and pattern recognition tasks, including medical imaging, remote sensing, material iden-

tification and image classification, etc. In the past decades, a variety of texture classification methods

[1, 7, 2, 3, 4, 5, 9, 10, 11, 12, 14, 28, 15, 16, 17] have been proposed. The use of co-occurrence matrices [1],5

which exploits the non-parametric statistics at the pixel level, is still popular in texture classification. As

a simple and efficient statistical descriptor, the local binary pattern (LBP) histogram [2] has been success-

fully used for rotation invariant texture classification. Some variants of LBP [3, 4, 5] have been proposed

to improve the accuracy and robustness of LBP operator. Filtering is also a pupular method for texture
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feature extraction. Filter banks [6, 7, 32, 33] such as Gabor filter and wavelet packet, which are good multi-10

resolution analysis tools, have been utilized to analyze textures. The statistics (e.g., mean and variance) of

filtering outputs in each sub-band are used to represent texture images for classification. Translation and

rotation invariance can be obtained by some proper filter design techniques; for example, in [7] multi-channel

Gabor filters were used to extract rotation invariant texture features.

Another class of texture classification techniques can be categorized as the texton learning based methods15

[11, 12, 13, 14, 30, 15, 16, 17]. Leung and Malik [11] proposed to build a vocabulary of micro-structures,

i.e., textons, for 3D texture classification. For each class, the training images are registered and filtered

to produce a set of 48-dimensional response vectors. Then the feature vectors are clustered by using the

K -means clustering method, and the resulting cluster centers are called 3D texons. For a test image, its

filter response vectors are labeled by the learned textons which are closest to them, and the texton histogram20

is used as the texture model for classification. Cula and Dana [12] extended Leung and Malik’s algorithm

to 2D texton learning for un-calibrated and single texture image classification. The methodology is similar

to Leung and Malik’s except that the occurrences of 3D textons are replaced by 2D textons. Since the

dimension of the texton histogram is high, Cula and Dana employed principal component analysis (PCA)

to reduce the histogram dimensionality; however, the dimensionality reduced model is much less effective.25

Varma and Zisserman [35, 13] modeled textures as their distributions over a set of textons, which are

learned from their responses to the MR8 filter bank. The MR8 filter bank is a rotationally invariant,

nonlinear filter bank with 38 filters but only 8 filter responses, with which the texton clustering can be

conducted in an 8-dimensional space. In [36, 14], textons are clustered directly from the patches of original

images instead of their MR8 filter responses. Experimental results showed that the image patch feature30

can lead to slightly better results than the MR8 feature in terms of classification accuracy. In order to deal

with large scale and viewpoint changes of texture images, Varma and Garg [30] extracted the local fractal

dimension and length feature from the MR8 filter responses to learn textons for classification.

Lazebnik et al. [15] detected the invariant regions in the texture image for texton learning. First, the

interest points in the texture image are detected by using the Harris-affine, Hessian-affine and Laplacian of35

Gaussian detectors. The surrounding region of the detected interest point is normalized by its characteristic

scale and main orientation to form the affine invariant region. A combination of spin image (SPIN) and

rotation invariant feature transform (RIFT) descriptors is then used to build the texture descriptor on these

detected regions. Textons are learned from these descriptors by the K -means clustering method and the

texton histogram is built as the statistical feature. Finally, the Earth Mover’s Distance (EMD) [31] is used40

to match the histograms for classification. Based on Lazebnik et al.’s work, Zhang et al. [16] combined

three kinds of descriptors, SPIN, RIFT and scale invariant feature transform (SIFT) [29], to learn textons

and employed a kernel SVM classifier for classification.

Recently the sparse representation (or sparse coding) technique [18, 19] has been widely applied to image

processing and computer vision tasks [20, 21, 22, 23]. The sparse frame based representation method [37]45
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and the discriminative dictionary learning method [38] have also been proposed for texture classification.

Based on the theory of compressed sensing [40], Liu et al. [17] proposed to couple random projection [41]

with texton learning for texture classification. Sorted pixels and pixel differences in a patch are projected

into a low dimensional space with random projection, and then textons are learned with the K -means

clustering method in the compressed domain. The texture description by the learned textons is the same50

as that in Varma and Zisserman’s method [13, 14].

In the above mentioned texton learning based methods, a dictionary of textons is usually learned by

the K -means clustering algorithm or the sparse coding algorithm, and the distributions of textons or the

histograms of texton encoding coefficients are computed as the statistical features for classification. By

the K -means clustering algorithm, however, the learned ball-like clusters may not be able to characterize55

accurately the intricate feature space of texture images. For example, for a feature vector which lies in the

boundary of two or more clusters, the K -means clustering will randomly assign it to one of the neighboring

clusters. For the sparse coding based texton learning and encoding algorithms, although some fast sparse

coding methods [25, 26] have been proposed, the l0-norm or l1-norm minimization still makes these methods

time-consuming in order to obtain good accuracy. Moreover, most of these texton learning based texture60

classification methods [13, 14, 17, 24] use the histogram of texton encoding coefficients for classification,

and they will become less effective when the number of training samples is insufficient.

In this paper, a novel texton learning and encoding approach is developed for effective and efficient

texture classification. The main motivations and contributions of this work are as follows. 1) Considering

that the texture patterns from the same class of texture images are similar, a regularized least square65

based texton learning method is developed to learn the texton dictionary class by class, and the whole

dictionary is concatenated by all sub-dictionaries. 2) A fast two-step l2-norm texton encoding method is

proposed to efficiently code the texture feature over the dictionary. 3) Two types of texton encoding induced

histogram features are computed from the coding coefficients and coding residuals, respectively, and they

are combined for texture classification via the nearest subspace classifier. The proposed scheme is verified70

on the representative and benchmark CUReT, KTH TIPS and UIUC datasets, showing very promising

performance, especially when the number of training samples is limited.

The rest of the paper is organized as follows. Section 2 presents in detail the proposed texton learning

and encoding scheme for texture classification. Section 3 performs extensive experiments and Section 4

concludes the paper.75

2. Texton Encoding Induced Statistical Features for Texture Classification

In this section, we describe in detail the proposed texture classification approach, whose framework is

illustrated in Fig. 1. There are four major components in the proposed method: texton dictionary learning,

texton encoding, feature description and classification.
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Figure 1: Framework of the proposed texton learning and encoding based texture classification method.

2.1. Texton Dictionary Learning80

A dictionary of textons is to be learned from the training texture images so that they can be used to

represent the test image. Before learning the textons, the training texture images are first converted into

grey level images and are normalized to have zero mean and unit standard deviation. This process reduces

the image variations caused by illumination changes. The texture features (e.g., the MR8 feature [13], the

patch feature [14] and the SIFT feature [29]) are then extracted from the pre-processed texture images and85

normalized by using the Weber’s law [13]. Suppose that at each pixel of a texture image, we extract an

M -dimensional feature vector, denoted by xi, and then for each class of texture images, we can construct a

training dataset X = [x1,x2, . . . ,xN ] ∈ RM×N , where N is the number of pixels in all training images of

this class. The dictionary of textons, denoted by D = [d1,d2, . . . ,dL] ∈ RM×L, is to be learned from the

training dataset X, where dj , j = 1, 2, . . . , L, is a texton. The dictionary D should be much more compact90

than X, i.e., L� N , but it is expected that all the samples in X could be well represented by the learned

dictionary D.

The texture classification methods in [11, 12, 13, 14, 30, 15, 16, 17] use the K -means clustering to learn

the textons. Though the K -means clustering is easy and fast to implement, its representation accuracy is

limited because only the cluster center is used to approximate the samples. To increase the representation95

accuracy, we could use the linear combination of several textons, but not the single cluster center, to

represent the sample. For example, in [24] the sparse representation model is used to train such a dictionary

by solving minD,Λ(‖X−DΛ‖2F +λ‖Λ‖1), where λ is a positive constant to balance the representation error

and the sparsity of coding coefficients Λ. However, the sparse coding process is rather time consuming.

Furthermore, using sparse representation to learn the dictionary of textons often implies that we have to100

use sparse representation to encode the query sample, making the texture classification process expensive

and slow.

In order to achieve high representation accuracy and efficiency simultaneously, in this paper we propose
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the following texton learning model:

minD,Λ(‖X −DΛ‖2F + λ
∑N

i=1
‖αi‖22 + γ

∑N

i=1
‖αi − µ‖22) s.t. dTj dj = 1 (1)

where Λ = [α1,α2, . . . ,αN ] ∈ RL×N is the coding coefficient matrix of X over D and αi, i = 1, 2, . . . , N ,

is the L-dimensional coding vector of xi; µ is the mean of all αi, i.e., µ = 1
N

∑N
i=1αi; parameters λ and γ

are positive scalars. In general, we require that each texton dj is a unit vector, i.e., dTj dj = 1.105

In the proposed texton learning model in Eq. (1), we use the l2-norm, instead of the l1-norm, to

characterize the coding vectors based on the following considerations. First, since the training samples are

from the same class, it is not necessary to force the encoding coefficients to be sparse. Second, we learn

a compact but not an over-complete dictionary for each class, and l2-norm regularization is good enough

to yield a stable solution to the dictionary. Third, since we will use l2-norm regularization in the texton110

encoding stage (please refer to Section 2.2), it is reasonable to also use l2-norm regularization to learn the

dictionary in the training stage. Finally, l2-norm regularization improves much the speed in training, which

is a desirable advantage. In addition, since the training samples xi from the same class share similarities

in appearance, their coding vectors should also be similar. Therefore, in Eq. (1) we enforce their coding

vectors αi to approach to their mean µ, i.e., minimizing
∑N

i=1 ‖αi − µ‖22. This term is basically to reduce115

the intra-class variation for more accurate classification.

The optimization of Eq. (1) can be easily conducted by alternatively optimizing D and Λ. With some

random initialization of D, we could first fix D and update Λ, and the problem in Eq. (1) is reduced to a

regularized least square problem:

α̂i = argminΛ(‖X −DΛ‖2F + λ
∑N

i=1
‖αi‖22 + γ

∑N

i=1
‖αi − µ‖22)

= argminΛ(‖X −DΛ‖2F + λ
∑N

i=1
‖αi‖22 + γ(

∑N

i=1
‖αi‖22 −N‖µ‖22)).

(2)

Let the partial derivative of Eq. (2) with respect to αi equal to 0, we have:

(DTD + λI + γI )αi −DTxi =
γ

N

∑N

i=1
αi. (3)

Summing up Eq. (3) from i = 1 to i = N , we have:∑N

i=1
αi = (DTD + λI )−1DT

∑N

i=1
xi. (4)

It is easy to derive that each coding vector αi in Λ can be analytically solved by:

α̂i = (DTD + λI + γI )−1(DTxi +
γ

N
(DTD + λI )−1DT

∑N

i=1
xi). (5)

Once all the coding vectors are updated, we could fix Λ and update D. The objective function in Eq.

(1) is then reduced to minD‖X −DΛ‖2F s.t. dTj dj = 1. We update the textons dj one by one. When

updating dj , the other textons dk(k 6= j) are fixed. Denote by βj the jth row of Λ. We have

d̂j = argmindj‖X −
∑

k 6=j
dkβk − djβj‖2F s.t. dTj dj = 1. (6)
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Let Z = X −
∑

k 6=j dkβk, and then the above equation can be re-written as:

d̂j = argmindj
‖Z − djβj‖2F s.t. dTj dj = 1. (7)

By using the Lagrange multiplier, we can obtain:

d̂j = argmindj tr((Z − djβj)(Z − djβj)
T − γdjdTj − γ). (8)

Let the partial derivative of Eq. (8) with respect to dj equal to 0, we have:

−ZβT
j + dj(βjβ

T
j − γ) = 0. (9)

It can be easily derived that the solution to Eq. (8) is

d̂j = ZβT
j /‖ZβT

j ‖2. (10)

Once all the textons dj in D are updated, we then fix D and update the coding coefficients Λ by using

Eq. (5), and in turn fix Λ and update the dictionary D by Eq. (10). Since in each iteration the energy

function in Eq. (1) can only reduce, the alternative optimization process will converge to a local minimum,

and the desired texton dictionary D is learned.120

2.2. Texton Encoding

By using the texton learning algorithm presented in Section 2.1, for each class k, k = 1, 2, . . . , C, we

can learn a texton dictionary Dk. Then the intra-class dictionaries learned from all the C classes can

be concatenated into a dictionary Φ = [D1,D2, . . . ,DC ] to encode the input texture feature vectors for

classification. In the K -means clustering based texton learning and encoding methods [11, 12, 13, 14, 15,125

16, 17], each texture feature vector is encoded as the label of the texton closest to it. A histogram is built

by counting the frequencies of texton labels and it is consequently used as the statistical feature to describe

the texture image.

The texton learning and encoding in the K -means clustering based methods [13, 14] is simple but rather

coarse. The proposed texton learning model in Eq. (1) can have much higher representation accuracy130

than the K -means clustering method because it uses a few textons to represent the feature vector. A

corresponding texton encoding model needs to be proposed to encode the test feature vector. Let us

denote by yi the feature vector extracted at position i of a given texture image. One may encode yi

by α̂i = argminαi
(‖yi − Φαi‖22 + λ‖αi‖22), which is very fast to optimize because α̂i = P · yi and

P = (ΦTΦ + λI )−1ΦT can be pre-calculated as a projection matrix. Different from the class-by-class135

dictionary learning model in Eq. (1), where the goal is to improve the representation power of D for a

given class, here Φ is the concatenated dictionary of all classes and our goal is to have a discriminative

encoding of yi for accurate classification. Using l2-norm to regularize αi is not effective to achieve this

goal since l2-norm tends to generate many big coefficients over different classes. Intuitively, employing l1-

norm regularization in the encoding is able to generate sparse and more discriminative coding coefficients:140
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α̂i = argminαi(‖yi−Φαi‖22 +λ‖αi‖1). However, the l1-minimization is very time consuming, particularly

for the concatenated big dictionary Φ. Though many fast l1-minimization techniques have been proposed,

such as FISTA [25] and ALM [26], it is still highly desirable if we could find an l2-minimization based texton

encoding method while preserving a certain degree of sparsity. We propose a two-step encoding scheme to

achieve this goal.145

First, we project yi by using the pre-calculated projection P : α̂i = P ·yi, and select the p most related

textons to yi from Φ by identifying the p most significant coding coefficients in |α̂i|. Usually we set p ≤M ,

where M is the dimension of the feature vector yi. Denote by di,1,di,2, . . . ,di,p the selected p textons to

yi. We can thus form a small but adaptive sub-dictionary to yi as Φi = [di,1,di,2, . . . ,di,p].

We then encode yi over the sub-dictionary Φi by

θ̂i = argminθi(‖yi −Φiθi‖22 + λ‖θi‖22). (11)

Clearly, this is a simple regularized least square problem as we have θ̂i = Pi ·yi and Pi = (ΦT
i Φi+λI )−1ΦT

i .150

Since p (p ≤M) is generally small (please refer to Section 3.4 for more information), the computation of θi

is very fast. We can also use the conjugate gradient method [39] to further speed up this encoding process.

The proposed two-step fast texton encoding scheme can be roughly viewed as a hybrid l0-l2-minimization

with ‖θi‖0 ≤ p. The first step selects the p textons and actually sets the coding coefficients over the other

textons as zeros. This leads to a sparse representation of yi. The second step refines the coding coefficients155

over the selected p textons to make the representation accurate.

2.3. Feature Description

By using the proposed texton encoding scheme, we could naturally define two types of statistical his-

togram features to describe the texture image. The first feature descriptor comes from the encoding coeffi-

cient θ̂i. We normalize θ̂i into ωi by

ωi,t = |θ̂i,t|/
∑p

q=1
|θ̂i,q|, t = 1, 2, . . . , p (12)

where ωi,t is the tth element of ωi and θ̂i,t is the tth element of θ̂i. Thus, for each feature vector yi of the

texture image, we have a representation vector vi, where only the entries corresponding to the same textons

as those in Φi will have non-zero values, i.e., ωi,t, while the other entries in vi are zeros. Then we can form

a histogram, denoted by hc, as one statistical descriptor of this texture image:

hc =
∑n

i=1
vi (13)

where n is the number of pixels in the texture image.

Apart from the encoding coefficient induced histogram, we can also build another histogram by using

the encoding residual associated with each of the selected p textons:

ei,t = ‖yi − di,tθ̂i,t‖2, t = 1, 2, . . . , p (14)
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where ei,t is the tth element of ei. Since the smaller the residual, the more important the associated texton

in representing the feature vector, we normalize ei into δi by

δi,t =
1/ei,t∑p
q=1 1/ei,q

, t = 1, 2, . . . , p (15)

where δi is the normalized reciprocal of encoding residual associated with Φi and δi,t is the tth element of

δi. With δi we can readily re-construct the encoding residual vector of yi over Φ, denoted by si. That is,

in si the entries corresponding to the same textons as those in Φi will have the same values as in δi, and

the remaining entries in si are zeros. Finally, for each feature vector yi of the texture image, we have an

encoding residual induced vector si, and then we can form a histogram, denoted by hr, as another statistical

descriptor of the texture image:

hr =
∑n

i=1
si. (16)

Histograms hc and hr are two statistical descriptors induced by the encoding coefficients and encoding

residuals, respectively. Fig. 2 shows two texture images of different classes and their histograms hc and160

hr. We can see that the histogram features of different classes are very different. Meanwhile, the two types

of histograms of the same texture image, hc and hr, also have enough difference, implying that they have

complementary information for texture classification.

Figure 2: Two texture images (the left column) and their histogram features hc and hr (the right two columns).

2.4. Classification

Suppose there are C classes of textures in the dataset, and there are l training samples per class. Denote

by Hc = [hc,1,hc,2, . . . ,hc,l] and Hr = [hr,1,hr,2, . . . ,hr,l] the sets of encoding coefficient histograms and

encoding residual histograms for one class, respectively. For a test texture image y, we first build its two

histogram descriptors, denoted by hy
c and hy

r , and then we use the nearest subspace classifier (NSC) to

classify y. We project hy
c and hy

r into the subspaces spanned by Hc and Hr, respectively, as follows:

ρc = (HT
c Hc)

−1HT
c h

y
c ;ρr = (HT

r Hr)−1HT
r h

y
r (17)

The projection residuals can be computed as:

errc = ‖hy
c −Hcρc‖2; errr = ‖hy

r −Hrρr‖2. (18)
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Using Eqs. (17) and (18), for each of the C classes, we can calculate the residuals, and then form two

vectors errc and errr which contain the projection residuals from all classes. By NSC, with either errc

or errr, we can classify y by either identity(y) = argminkerrc(k) or identity(y) = argminkerrr(k), k =

1, 2, . . . , C. To exploit the discriminative information from both coding coefficients and coding residuals,

we fuse errc and errr for classification. Here we adopt the simple weighted average method for fusion:

errf = w · errc + (1− w) · errr, 0 ≤ w ≤ 1 (19)

where w is the weight and it can be trained from the training dataset with the ”leave-one-out” strategy.

Then the classification can be done via

identity(y) = argminkerrf (k), k = 1, 2, . . . , C. (20)

3. Experimental Evaluation165

3.1. Texture Datasets

To demonstrate the effectiveness of our proposed texture classification method, three representative and

benchmark texture datasets are used in our experiments: CUReT [27], KTH TIPS [28] and UIUC [15]. In

accordance with other studies which use the CUReT dataset for classification, we use the same subset of

CUReT provided by Varma and Zisserman [13], which contains 61 classes and 92 images per class. There170

are a few factors that make the CUReT dataset challenging. It has both large inter-class similarity and

intra-class variation. The images were captured under unknown viewpoint and illumination. Fig. 3 shows

some sample images from two different classes in the CUReT dataset. One can see that their appearances

are very similar.

A drawback of the CUReT dataset is its lack of large scale variations. Hence, the KTH TIPS dataset was175

established to supplement CUReT additional sample images with scale variations. The KTH TIPS dataset

contains 10 classes of materials which are presented in the CUReT dataset. Each class was imaged at 9

different distances while at each distance the images were captured under 3 different directional illuminations

and 3 different viewpoints. As a result, 81 texture images are provided for each class. In our experiment,

we treat it as a stand-alone dataset, following the setting in [16]. Fig. 4 shows some texture images of two180

different classes in the KTH TIPS dataset.

The UIUC dataset contains 25 classes, each having 40 images. A major property of the UIUC dataset

is that there are some significant scale and viewpoint changes as well as some non-rigid deformations in its

images. Although the UIUC dataset has less severe lighting variations than the CUReT dataset, in terms

of intra-class variations of appearance, it is the most challenging one among the commonly used datasets185

for texture classification. Fig. 5 shows some texture images in the UIUC dataset.
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Figure 3: Each row shows three sample images of one texture class in the CUReT dataset.

Figure 4: Each row shows three sample images of one texture class in the KTH TIPS dataset, which has large scale variations.

Figure 5: Each row shows three sample images of one texture class in the UIUC dataset, which has large viewpoint changes

and non-rigid deformations.
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3.2. Parameter Selection and Implementation Details

The evaluation methodology on the three datasets is as follows: l images are randomly chosen per class

for training and the remaining images are used for testing. On CUReT, 6, 12, 23 and 46 images per class

are randomly chosen to form the training set; on KTH TIPS, 5, 10, 20, 30 and 40 images per class are190

randomly chosen to form the training set; on UIUC, 5, 10, 15 and 20 training images are randomly chosen

per class to form the training set. For each setting, the experiments were run 100 times and the average

classification accuracy is reported. In texton dictionary learning of our model, parameters λ and γ in Eq.

(1) are set to 2× 10−4. In texton encoding with the learned dictionary, parameter λ is also set to 2× 10−4.

These parameters are fixed on all the three texture datasets.195

On the CUReT and KTH TIPS datasets, we employed the MR8 feature [13] to represent the texture

image for texton learning and encoding. For each class, L = 40 textons are learned. The MR8 feature

vector is 8-dimensional, i.e., M = 8, and thus in the two-step fast texton encoding process we choose p = 7

textons to form the sub-dictionary for encoding.

Since the texture images in the UIUC dataset are with large scale and viewpoint variations, using the200

MR8 feature alone cannot achieve good classification performance. Many existing texture classification

methods [15, 16, 17, 34] employ multiple types of features on the UIUC texture dataset. For example, in

[15], the SPIN and RIFT descriptors are combined to learn the dictionary for classification, while in [16] the

SPIN, RIFT and SIFT descriptors are combined to learn the dictionary. In [17] and [34], the combination

of sorted random projection features and the combination of three kinds of multi-fractal spectrums are used205

to classify the UIUC dataset, respectively. Here we employ the MR8 feature [13] and the SIFT feature [29]

to represent the texture images in the UIUC dataset to address their large scale and viewpoint variations.

For each class, 100 MR8 textons and 100 SIFT textons per class are learned, respectively. Their histogram

features are combined to classify the texture images. For the MR8 feature, p = 7 is set in texton encoding.

For the 128-dimensional SIFT feature, we set p = 100.210

For the projection residual fusion in NSC based classification, the weight w is determined by applying

the leave-one-out method on the training set. When 6, 12, 23 and 46 training samples per class are used

in the experiments on the CUReT dataset, the values of w are 0.5, 0.65, 0.4 and 0.5, respectively. On the

KTH TIPS dataset, when 5, 10, 20, 30 and 40 training samples per class are used, the weights are 0.65, 0.95,

0.65, 0.75 and 0.65, respectively. On the UIUC dataset, when 5, 10, 15 and 20 randomly chosen training215

samples are used, the weights are 0.6, 0.75, 0.75 and 0.55, respectively.

3.3. Experimental Results

Evaluation of the proposed method : We denote by TEISF c, TEISF r and TEISF f the proposed texton

encoding induced statistical feature (TEISF) based methods with only the coding coefficient histogram

feature, with only the coding residual histogram feature, and with the fused feature, respectively. We220

compare the performance of TEISF c, TEISF r and TEISF f on the three texture datasets with different
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numbers of training samples. The experimental results on CUReT, KTH TIPS and UIUC are listed in

Tables 1, 2 and 3, respectively. Clearly, compared with TEISF c and TEISF r, the classification accuracies

with TEISF f are much improved. Moreover, when the number of training samples is small, TEISF c and

TEISF r may not get very promising results; however, the fusion of them, i.e., TEISF f, works very well.225

This implies that the encoding coefficients and encoding residuals have complementary information for

classification. For example, in the experiment where 6 training samples were randomly chosen from each

class on the CUReT dataset, 186 texture images are miss-classified by TEISF f while 647 and 539 images

are incorrectly classified with TEISF c and TEISF r, respectively. Fig. 6 illustrates some example images

from the 3 most frequently mis-classified classes by TEISF f.230

Table 1: Classification rates on CUReT by TEISF c, TEISF r and TEISF f.

Training samples 6 12 23 46

TEISF c 87.19% 93.4% 97.29% 99.03%

TEISF r 88.35% 93.83% 97.43% 99.15%

TEISF f 95.21% 98.5% 99.25%99.54%

Table 2: Classification rates on KTH TIPS by TEISF c, TEISF r and TEISF f.

Training samples 5 10 20 30 40

TEISF c 92.11% 95.61% 96.99% 97.06% 97.53%

TEISF r 92.16% 95.18% 96.70% 97.30% 97.67%

TEISF f 92.95%95.77% 98.1% 98.3% 98.9%

Table 3: Classification rates on UIUC by TEISF c, TEISF r and TEISF f.

Training samples 5 10 15 20

TEISF c 91.05% 95.30% 97.38% 98.18%

TEISF r 93.29% 95.82% 97.65% 98.22%

TEISF f 94.37%98.38%99.35%99.54%

Comparison evaluation: We compare our methods with representative and recently developed texture

classification methods [2, 4, 9, 10, 13, 14, 30, 28, 15, 16, 17]. Since many competing methods do not have

publically released source codes available, we cropped the results from their original papers, or we asked

the authors to provide the results. If the classification accuracies of some competing methods are not

available, we use symbol ’–’ to represent the missing results. Different competing methods may use different235

classifiers, e.g., the nearest neighbor classifier with the χ2-distance in [2, 4, 13, 14, 30, 34, 9], SVM classifier

in [28, 16, 17], etc. For the LBP [2], CLBP [4] and VZ MR8 [13] methods, we coupled them with the NSC

classifier, which gives better classification rates than the nearest neighbor classifier with the χ2-distance as

in the original papers.
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Figure 6: Example images which are mis-classified by the TEISF f method in the CUReT dataset. The left 3 columns show

some test texture images while the right 3 columns show images from the class that these test images are mis-classified to.

Specifically, “Styrofoam”(top), “Aquarium stones”(middle) and “Moss”(bottom) are mis-classified to “Cork”, “Aluminum

foil” and “Soleirolia plant”, respectively. From these example images one can see that the mis-classified test images are often

perceptually similar to the template images.

Table 4 compares the competing texture classification methods on the three texture datasets when240

enough training samples are available (46 for CUReT, 40 for KTH TIPS and 20 for UIUC). One can see

that when there are enough training samples, most of the methods can achieve good classification accuracy.

The proposed TEISF f method works the best on the CUReT and UIUC datasets, and it is only slightly

worse than Liu et al.’s method [17] by a gap of 0.39% on the KTH TIPS dataset. In this experiment,

the gain of TEISF f over TEISF c and TEISF r is not significant because TEISF c and TEISF r can also245

achieve good results when enough training samples are available.

By decreasing the number of training samples per class, in Tables 5, 6 and 7 we present the classification

accuracies on the three datasets, respectively. (Note that not all the competing methods employed in Table 4

are reported in Tables 5, 6 and 7 since some results are not available.) From these tables, we can readily make

the following findings. 1) The proposed TEISF f achieves the best classification accuracy in almost every250

case. 2) With the decrease of the number of training samples, the advantage of TEISF f over other methods

is getting more and more obvious. 3) TEISF f is much more robust to the number of training samples

than other competing methods. For example, on the CUReT dataset, TEISF f’s classification accuracies

are 95.21%, 98.5%, 99.25% and 99.54% with 6, 12, 23 and 46 training samples per class, respectively. From

46 training samples per class to 6 training samples per class, the drop in classification rate is only 4.3%.255

However, for other methods, the drop is often more than 10%. 4) Some methods may work well on one

dataset but not so well on other datasets. For example, Xu et al.’s method [9, 34] has good accuracy on the

UIUC dataset, whereas its accuracy on the CUReT dataset is not so good. In comparison, the proposed

13



TEISF f can obtain good results across all datasets. In addition, in Fig. 7 we plot the curves of classification

rate vs. number of training samples on the three datasets by TEISF f. The curves by VZ MR8 [13]+ NSC,260

CLBP [4]+NSC and the method in [17] are also plotted for comparison. Clearly, the proposed method is

much more robust than other methods to the number of training samples.

The speed of one algorithm in processing one query sample is very important for its practical usage. In

the texton encoding stage of our TEISF f algorithm, the time complexity of selecting the p most related

textons is O((CL)2), and the complexity of solving the least square problem in Eq. (11) is O(p2M), where265

CL is the number of textons in the concatenated dictionary Φ, p is the number of the selected textons in

the texton encoding stage and M is the dimension of the texture feature vector. Hence, the time complexity

of texton encoding in the proposed TEISF f method is O(n(CL)2 +np2M), where n is the number of input

feature vectors of a test image. In the feature description stage, since at each pixel in the image there

are CL operations and 4Mp + CL operations to form the coefficient histogram and residual histogram,270

respectively, the time complextiy of feature description is O(nMp + nCL). In the classification stage, the

time complextiy of computing the projection residuals and fusing them is O(l2CL), where l is the number

of training images per class.

Let us then compare the average running time of the proposed TEISF f method with the K -means

clustering based VZ MR8 method [13] and the l1-sparsity based texton learning method [24], where a texton275

encoding procedure is employed to classify the query sample. On the CUReT and KTH TIPS datasets, 40

textons per class are used in the texton encoding of the proposed method, and on the UIUC dataset, 100

MR8 textons and 100 SIFT textons per class are employed, respectively. All experiments were performed

in the Matlab programming environment on a laptop with a 2.30 GHz quad-core Intel processor and 8 GB

memory. The average running time is listed in Table 8. One can see that TEISF f is much faster than280

the l1-sparsity based method [24]. Compared with the K -means clustering based method in [13], although

the proposed method is slower, it can obtain much higher classification rate (please refer to Tables 5, 6

and 7). Overall, the proposed method can achieve a good trade-off between the classification rate and the

computational complexity.

3.4. Effects of Parameters L and p285

In this subsection, we study the effects of parameters L and p on the final classification accuracy.

Parameter L is the number of textons per class in the dictionary, which controls the capacity of the dictionary

to represent the texture appearance. We conduct a series of experiments with different numbers of textons

on the three texture datasets. Fig. 8 plots the curves of classification rate v.s. number of leaned textons

from each class. One can see that in the proposed TEISF f method the number of learned textons, which290

ranges from 20 to 100, has little effect on the final classification accuracy.

The parameter p controls the number of selected textons in the texton encoding stage. In some sense it

controls the sparsity of coding coefficients in the texton encoding. Fig. 9 shows the classification rates under

different numbers of selected textons on the CUReT, KTH TIPS and UIUC datasets, respectively. Note that
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Table 4: Texture classification rates by different methods when the number of training samples is relatively large.

CUReT(46) KTH TIPS(40) UIUC(20)

LBP [2]+NSC 99.11% 97.19% 80.3%

CLBP [4]+NSC 96.19% 96.74% 95.18%

VZ MR8 [13]+NSC 98.17% 97.06% 96.74%

VZ Patch [14] 98.03% 92.40% 97.83%

Hayman et al. [28] 98.46% 94.8% 92%

Lazebnik et al. [15] 72.5% 91.13% 93.62%

Zhang et al. [16] 95.3% 96.1% 98.7%

Varma and Garg [30] 97.5% 95.4%

Crosier and Griffin [10] 98.6% 98.5% 98.8%

Xu et al. [9] 98.60%

Liu et al. [17] 99.37% 99.29% 98.56%

TEISF c 99.03% 97.53% 98.18%

TEISF r 99.05% 97.67% 98.22%

TEISF f 99.54% 98.9% 99.54%

Table 5: Classification rates on the CUReT dataset with different numbers of training samples.

Training samples 6 12 23 46

LBP [2]+NSC 82.25% 91.71% 96.24% 99.11%

CLBP [4]+NSC 79.75% 90.51% 94.47% 96.19%

VZ MR8 [13]+NSC 86.33% 92.79% 96.45% 98.17%

Varma and Garg [30] 81.67% 89.74% 94.69% 97.5%

Liu et al. [17] 86.48% 96.43% 97.71% 99.37%

TEISF c 87.19% 93.4% 97.29% 99.03%

TEISF r 88.35% 93.83% 97.43% 99.15%

TEISF f 95.21% 98.5% 99.25%99.54%

two dictionaries (for MR8 and SIFT features) are used on the UIUC dataset. Thus in the right sub-figure295

of Fig. 9, the x-axis labels a pair of numbers of the selected MR8 and SIFT textons. From these figures, we

can observe that when p is large (e.g., p > 15 for the MR8 feature on the CUReT dataset), the sparsity of

coding coefficients is reduced and the classification rate also decreases. When p is very small (e.g., p < 5 for

the MR8 feature on the CUReT dataset), the representation is not accurate so that the classification rate

is not very good, either. Emperically, when p is slightly less than the feature dimensionality (e.g., p = 7 for300

the 8-dimensional MR8 feature), a good balance of representation accuracy and sparsity is reached so that

good classification rate can be obtained. For example, on the CUReT dataset, with 46 training samples per
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Table 6: Classification rates on the KTH TIPS dataset with different numbers of training samples.

Training samples 5 10 20 30 40

LBP [2]+NSC 72.50% 85.41% 94.12% 95.73% 97.19%

CLBP [4]+NSC 78.51% 87.69% 94.78% 96.05% 96.74%

VZ MR8 [13]+NSC 90.46% 93.45% 95.32% 95.70% 97.06%

Liu et al. [17] 80.90% 89.49% 96.40% 98.4% 99.29%

TEISF c 92.11% 95.61% 96.99% 97.06% 97.53%

TEISF r 92.16% 95.18% 96.70% 97.30% 97.67%

TEISF f 92.95%95.77% 98.1% 98.3% 98.9%

Table 7: Classification rates on the UIUC dataset with different numbers of training samples.

Training samples 5 10 15 20

LBP [2]+NSC 43.34% 63.15% 74.15% 80.3%

CLBP [4]+NSC 76.73% 89.5% 94% 95.18%

VZ MR8 [13]+NSC 86.54% 93.56% 95.71% 96.74%

VZ Patch [14] 90.17% 95.18% 96.94% 97.83%

Lazebnik et al. [15] 84.77% 90.17% 92.42% 93.62%

Varma and Garg [30] 85.35% 91.64% 94.09% 95.4%

Xu et al. [9] 93.42% 96.95% 98.01% 98.60%

Liu et al. [17] 90.96% 96.00% 97.59% 98.56%

TEISF c 91.05% 95.30% 97.38% 98.18%

TEISF r 93.29% 95.82% 97.65% 98.22%

TEISF f 94.37%98.38%99.35%99.54%

Table 8: Average running time (second) of the three texton encoding based methods on the CUReT, KTH TIPS and UIUC

texture datasets.

CUReT KTH TIPS UIUC

VZ MR8 [13] 7.3s 4.2s 80.9s

l1-sparsity [24] 133.2s 53.3s 1254.5s

TEISF f 13.6s 8.0s 217.6s

class, when 7 textons are chosen, a classification rate of 99.54% can be obtained.
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Figure 7: The curves of classification rate vs. number of training samples by TEISF f, VZ MR8 [13]+NSC, CLBP [4]+NSC

and Liu et al.’s method [17] on CUReT (left), KTH TIPS (middle) and UIUC (right).
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Figure 8: The curves of classification rate vs. number of learned textons from each class of training samples by TEISF f on

CUReT (left), KTH TIPS (middle) and UIUC (right).
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Figure 9: The curves of classification rate vs. number of selected textons in the texton encoding stage by TEISF f on CUReT

(left), KTH TIPS (middle) and UIUC (right).
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4. Conclusions

We proposed a texton encoding based texture classification method, which is simple to implement305

and shows very promising performance. The textons were learned to ensure the representation accuracy

while reducing the within-class variance. A two-step texton encoding scheme was then proposed to encode

efficiently the texture feature over the learned dictionary while preserving certain sparsity. Two types of

statistical features, namely, coding coefficient induced histogram and coding residual induced histogram,

were then defined, with which the nearest subspace classifier was applied for texture classification. The310

proposed texton encoding induced statistical feature (TEISF) method was validated on three representative

and benchmark texture datasets: CUReT, KTH TIPS and UIUC. The experimental results demonstrated

that TEISF achieves very good texture classification performance, especially when the number of training

samples is small.
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