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Abstract

Efficient feature description and classification of dynamic texture (DT) is an important problem in computer

vision and pattern recognition. Recently, the local binary pattern (LBP) based dynamic texture descriptor

has been proposed to classify DTs by extending the LBP operator used in static texture analysis to the

temporal domain. However, the extended LBP operator cannot characterize the intrinsic motion of dynamic

texture well. In this paper, we propose a novel video set based collaborative representation dynamic texture

classification method. First, we divide the dynamic texture sequence into subsequences along the temporal

axis to form the video set. For each DT, we extract the video set based LBP histogram to describe it. We

then propose a regularized collaborative representation model to code the LBP histograms of the query video

sets over the LBP histograms of the training video sets. Finally, with the coding coefficients, the distance

between the query video set and the training video sets can be calculated for classification. Experimental

results on the benchmark dynamic texture datasets demonstrate that the proposed method can yield good

performance in terms of both classification accuracy and efficiency.

Keywords: Dynamic texture classification, local binary pattern, texture feature extraction, collaborative

representation

1. Introduction

Dynamic textures (DT) are textures with motion [1]. They are video sequences of moving scenes, which

vary not only on the spatial distributions of intensity, but also on the dynamics over time. There are such

video sequences in the real word, for example, the sequences of forest fire, waterfall, swarm of birds and

humans in crowds, etc. In recent years, the study of DT has been receiving considerable attention, including5

DT modeling, synthesis, segmentation and classification. Effective feature extraction is a key step for DT

classification. It is desirable that effective DT feature can characterize texture appearance and motion well.

Also, the extracted DT feature can also be applied to video understanding. For example, the DT feature

can be used to characterize appearance and motion of human for human action recognition [2, 3, 4, 5].

Different from static textures, dynamic textures exhibit certain stationary properties in the temporal10
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domain. One challenging problem in DT classification is how to discriminatively describe DT for classi-

fication, i.e., texture appearances in the spatial domain and dynamics in the temporal domain. Existing

approaches characterize DT by either patterns of motion field in DT, or the linear dynamic system or

the combination of texture appearance features and motion features. The patterns of motion field [6, 7]

of DTs are discriminative and thus very useful for DT classification. In [8], the normal flow features are15

combined with periodicity features for DT, attempting to explicitly characterize motion magnitude, direc-

tionality and periodicity. Based on the velocity and acceleration fields of DT, Lu et al. [9] constructed

the spatio-temporal multi-resolution histograms of the velocity and acceleration fields for DT classification,

where image sequences at different spatio-temporal scales are estimated with the structure tensor method.

In [10], the normal flow features and regularized complete flow features are compared, and it is concluded20

that normal flow contains information on both shape and dynamics of DT.

Doretto et al. [11] showed that the spatial appearance and dynamics of DT can be modeled by a linear

dynamic system (LDS). Thus, DT sequences can be discriminated with different dynamic parameters of

the LDS. Based on the LDS representation, several methods have been proposed, where different distances

between the model parameters of two LDSs are defined. In [12], the Binet-Cauchy kernel is used to compare25

the parameters of the two LDSs. Chan and Vasconselos [13] employed kernel PCA to learn a non-linear kernel

dynamic texture and used the Martin distance to measure the similarity between the kernel dynamic textures

for DT classification. However, these methods cannot deal with DT sequences with viewpoint changes. In

order to handle viewpoint changes of DTs, the dictionary of the parameters of the LDS [14, 15, 16] is learned

with K-means clustering and the bag-of-feature representation is used for DT classification.30

Since dynamic texture can be viewed as texture with motion, researchers combined the texture appear-

ance features and the motion features to characterize DT. Some local operator based static texture feature

extraction methods [17, 18, 19, 20, 21], therefore, are extended to DT. In [19, 20], the fractal dimension of

the 2D slice of the 3D spatio-temporal volume was proposed to characterize the self-similarities of DTs for

classification. In [21, 22, 23], the distributions of 3D Gaussian third derivative filter are used to characterize35

the dynamic structure of DT. The volume LBP (VLBP) [24, 25] is an extension of the LBP descriptor

[17, 26, 27] widely used in static texture analysis by combining texture appearance and motion. The VLBP

descriptor compares each pixel with its neighborhoods in the previous, current and posterior frames to

encode each pixel as a sequence of binary codes. Then, three sequences of binary codes from the three

frames are concatenated to form the VLBP descriptor to describe the local structure in DT. When the40

number of neighborhood points increases, the number of VLBP becomes very large. To make the VLBP

computationally simple, LBP histograms from three orthogonal planes (LBP TOP) [25], i.e., the XY plane,

XT plane and YT plane, are extracted to characterize DT. Then the LBP histograms from the three planes

are concatenated to form the LBP TOP descriptor.

Inspired by the success of collaborative representation in face recognition [28, 29], in this paper we45

develop a novel collaborative representation based DT classification method. Our proposed method is

2



based on the LBP based DT descriptor. In the proposed method, in order to extract robust features from

DT with complex motions, we first model the DT sequence by the video set, which is formed by dividing

the sequence into subsequences in the temporal domain. And each DT sequence can be represented by the

video set based LBP descriptors. Considering the similarities between motion patterns of different DTs, we50

then propose a regularized collaborative representation model to represent the query DT sequence over all

training DT sequences with the video set based descriptor. Finally, we classify the query DT sequence by the

minimal representation residual to the training DT sequences. Experimental evaluations on the benchmark

dynamic texture datasets demonstrate the effectiveness of the proposed method. The main difference from

the previous studies lies in that we model DT with the video set and use the video sets to collaboratively55

represent DT in order to capture the complex motion.

The rest of the paper is organized as follows. Section 2 presents in detail the proposed collaborative

representation based DT classification scheme. Section 3 conducts experiments on the benchmark dynamic

texture datasets and Section 4 concludes the paper.

2. Proposed Method60

In this section, we describe in detail the proposed DT classification approach. There are three major

components in our framework: video set based DT descriptor, video set based collaborative representation

and DT classification. In Section 2.1, we present video set based DT descriptor. Moreover, we point out

that the original LBP based DT descriptor is a special case of the video set based DT descriptor. The video

set based collaborative representation and classification are presented in Section 2.2, respectively.65

2.1. Video Set Based DT Descriptor

In this subsection, we propose a video set based DT descriptor to extract DT features in order for

capturing the intrinsic motions of DT. Let I denote the DT sequence. We divide the DT sequence I into

a sequence of homogeneous videos in the temporal domain to form a video set, I1, I2, · · · , In, where n is

the number of the subsequence videos. Then, the LBP based DT descriptor Hi is employed to represent70

the subsequence Ii, i = 1, 2, · · · , n. Finally, we combine the LBP based DT descriptors of the subsequence

videos to form the video set based DT descriptor W , W =
∑n

i=1 aiHi, where ai is the weight of the LBP

histogram Hi.

Suppose that there are ci pixels in the homogeneous video Ii. The LBP based DT descriptor Hi of the

subsequence Ii is denoted, Hi = [oi,1, oi,2, · · · , oi,s], where oi,r denotes the normalized number of the rth

binary pattern, r = 1, 2, · · · , s, and s is the number of binary patterns in the subsequence Ii. Let S denote

the original LBP based DT descriptor of the whole DT sequence, S = [p1, p2, · · · , ps], where pr denotes the

normalized number of the rth binary pattern in the whole sequence, r = 1, 2, · · · , s. For each component of

the original LBP based DT descriptor, then we have the following equation:

pr =

∑n
i=1 cioi,r∑n

i=1 ci
. (1)
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where r = 1, 2, · · · , s. Therefore, the original LBP based DT descriptor S can be viewed as a special case

of the video set based DT descriptor:

S =

∑n
i=1 ciHi∑n
i=1 ci

. (2)

The original VLBP descriptor[25] encodes the texture appearance in the consecutive three frames to

describe DT. The LBP TOP descriptor [25] is a simplified version of the VLBP descriptor. It uses LBP75

histograms obtained independently from three orthogonal planes ( i.e., the XY plane, the YT plane and

the XT plane) to characterize the texture appearance and dynamics of DT. Then the histograms from the

three planes are concatenated into a single histogram to form the LBP TOP descriptor. From Eq. (2), one

can see that in VLBP and LBP TOP, both LBP histograms are summed with the weight ai, ai = ci∑n
i=1 ci

,

which is highly relative to the pixels in the subsequence. The weight cannot characterize the motion change80

well. Thus, the original VLBP descriptor cannot describe DT with the complex motions well. For example,

for a DT sequence of burning fire changing gradually from a spark to a large fire, it is homogeneous at

each time instant but has varying statistics over time. Although the LBP TOP descriptor can describe the

motion of the burning fire at each time instant well, it is difficult to capture the whole dynamic statistics

over time. Different from the original LBP based DT descriptor, the weight of the video set based DT85

descriptor is learned by collaborative representation. In the next subsection, we present the details of

employing collaborative representation to learn the weights.
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Figure 1: Flow chart of the video set based DT descriptor.

2.2. Video Set Based Collaborative Representation and Classification

Suppose there are C classes of DTs and q training samples (sequences) for each class. Each sequence

can be divided into n subsequences to extract VLBP feature to represent it. Thus, we can construct a90

training set X = [X1,X2, · · · ,XC ], Xk = [Wk,1,Wk,2, · · · ,Wk,l] ∈ Rs×l, where Wk,j is the VLBP based

DT descriptor of the jth homogeneous video from class k, s is the dimension of Wk,j , l = nq is the number
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of the homogeneous videos of class k, j = 1, 2, · · · , l, k = 1, 2, · · · , C. Let Y = [Y1,Y2, · · · ,Yn] denote

the video set based DT descriptor of the query DT sequence, where Yj is the LBP based DT descriptor

of the jth subsequence in the video set, j = 1, 2, · · · , n. One fact in DT analysis is that motion patterns95

from different DTs still have much similarities. Therefore, especially when there are few training samples,

it is helpful to use other classes of DT sequences to collaboratively represent the query DT sequence for

classification. In addition, for DT with the complex motions, it is difficult to use the single LDS to model

the dynamics of the DT sequence. It is desirable to represent the complex dynamics of the query DT with

the combination of dynamics from all classes of DTs.100

In order to achieve high representation accuracy, we propose the following collaborative representation

model:

(â, b̂) = argmina,b‖Y a−Xb‖22 + λ1‖a‖22 + λ2‖b‖22

+λ3
∑C

k=1
‖bk − e1µk‖22 + λ4‖e2a− 1‖22

(3)

where a and b are the representation vectors, i.e., the weight vectors of the DT descriptors of the query

DT and training DT sequences, a = [a1, a2, · · · , an], b = [b1, b2, · · · , bC ] ; bk is the representation vector

associated with training samples Xk; µk is the mean of all representations bk,j from class k, i.e., µk =

1
l

∑l
j=1 bk,j ; ai is the ith coefficient in a; λ1, λ2, λ3 and λ4 are positive scalars to balance the representation

residual and the regularizer; e1 ∈ Rn×1 is a column vector whose elements are one and e2 ∈ R1×n is105

a row vector whose elements are one . In the proposed model, the video set based DT descriptor Y a

is collaboratively represented over the training DT set X. In order to make the solution stable, the

regularization terms of l2-norm of the representation coefficient vectors a and b are imposed. To avoid

the trivial solution a = b = 0, the constraint
∑
ai = 1 is imposed. In addition, since the training DT

sequences from the same class share similarities in texture appearances and dynamics, their representation110

coefficients should be similar. Therefore, in the proposed model, we enforce the representation coefficient

vector bk to approach to their mean µk, i.e., minimizing the regularization term
∑C

k=1 ‖bk − e1µk‖22. This

term is basically to reduce the intra-class variation for more accurate classification.

The optimization of Eq. (3) can be easily conducted by alternatively optimizing a and b. With some

random initialization of b, we could first fix b and update a, and the problem in Eq. (4) is converted into

a regularized least square problem:

â = argmina‖Y a−Xb‖22 + λ1‖a‖22 + λ2‖b‖22

+λ3
∑C

k=1
‖bk − e1µk‖22 + λ4‖e2a− 1‖22.

(4)

Let the partial derivative of Eq. (5) with respect to a equal to zero, we have:

â = (Y TY + λ1I + λ4e
T
2 e2)−1(Y TXb + λ4e

T
2 ). (5)

Once the representation coefficient vector a is updated, we could fix a and update b. We update bk

one by one. When updating bk, the other sub-vectors of representation coefficients associated with the
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LBP based DT descriptors, bj(j 6= k), are fixed. The objective function in Eq. (3) is then reduced to the

following problem:

b̂k = argminbk
‖Y a−

∑
j 6=k

Xjbj −Xkbk‖22 + λ2‖bk‖22 + λ3‖bk − e1µk‖22. (6)

Since µk =
eT
1 bk

n , Eq. (6) can be re-written as:

b̂k = argminb‖Y a−
∑

j 6=k
Xjbj −Xkbk‖22 + λ2‖bk‖22 + λ3‖bk −

e1e
T
1 k

n
‖22. (7)

Let the partial derivative of Eq. (7) with respect to bk equal to zero, we have:

b̂k = (XT
k + λ2I + λ3I)−1(XT

k Y a−
∑

j 6=k
Xjbj − λ3I). (8)

Once all representation coefficient vectors bk are updated, we then fix b and update the representation

coefficient vector a with Eq. (5). Since in each iteration the objective function in Eq. (3) can reduce, the115

alternative optimization process will converge to a local minimum and the representation coefficient vectors

a and b are learned.

Suppose that the coefficient vectors â and b̂ are obtained by Eqs. (5) and (8), we can write b̂ as

b̂ = [b̂1, b̂2, · · · , b̂C ], where b̂k is the sub-vector of coefficients associated with training set Xk. We use the

representation residual errk of Y â over the video set Xk to determine the class label of Y :

identity(Y ) = argminkerrk, k = 1, 2, · · · , C (9)

where errk = ‖Y â−Xkb̂k‖22.

In our objective function, fixing one variable to optimize the other variable is a regularized least square

problem (please refer to Eqs. (4) and (6)). Thus, by fixing one variable, optimizing the other variable is a120

convex optimization problem and the global minimum can be obtained. Therefore, the convergence of the

solution of the objective function Eq. (3) can be guaranteed.

Figs. 2 and 3 illustrate the representation coefficients and residual errors for classification on the UCLA

DT dataset [11] with our proposed video set based collaborative representation scheme. For each class, one

DT sequence is chosen as the training sample and other three samples are chosen as the query samples.125

Each DT is divided into 15 homogeneous video sequences to form the video set. Here we choose the boiling

water DT from class 1 and the waterfall DT from class 50 as the query DT sequences. The representation

coefficient vectors b are plotted in Fig. 2. (a) and Fig. (3).(a), respectively. The highlighted coefficients

(marked as the red dot line) in Figs. 2 and 3 are associated with the training DT samples X1 and X50,

respectively, which are consistent with the class labels of the query DT sequences. It is observed that130

these coefficients are much more greater than the coefficients associated with other classes. Moreover, err1

and err50 in Fig. 2. (b) and Fig. (3).(b) are the minimal errors among all the training DT sequences,

corresponding to the class labels of the query DT sets, respectively.
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(a) The boiling water DT and the representation coefficients over the training video sets.

(b) The residual error for the boiling water DT.

Figure 2: The representation coefficients and residual errors for the boiling water DT.

(a) The waterfall DT and the representation coefficients over the training video sets.

(b) The residual error for the waterfall DT.

Figure 3: The representation coefficients and residual errors for the waterfall DT.
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Table 1: Algorithm of the proposed video set based collaborative representation.

Input: query set Y ; training set X = [X1,X2, · · · ,XC ]; λ1, λ2, λ3, λ4.

Output: the label of query DT sequence Y .

Initialize b and t = 0.

While t < max num do

Update a with Eq. (5);

Update b with Eq. (8);

Set t = t+ 1.

End while

Compute errk = ‖Y â−Xkb̂k‖22.

Identity(Y ) = argminkerrk.

3. Experimental Evaluation

3.1. Dynamic Texture Datasets135

To demonstrate the effectiveness of our proposed video set based collaborative representation DT clas-

sification method, two representative and benchmark DT datasets are used in our experiments: UCLA and

Dyntex. The UCLA dynamic texture dataset [11] contains 50 classes of various texture, including boiling

water, fountains, fire, waterfalls and flowers swaying in the wind, etc. Each class of DT contains four

grayscale video sequences with 75 frames of 160× 110 pixels. We crop each sequence to a 48× 48 window140

that contains the representative motion. The sample DTs in the UCLA dataset are shown in Fig. 4.

The DynTex dataset [30] is a large DT dataset. It contains 35 classes of DTs, including various kinds of

DT video sequences, such as escalator, smoke and fountains, etc. The sequences in the DynTex dataset are

taken with the scale and rotation changes. Each sequence is a color video with 250 frames with 400× 300

pixels and de-interlaced with a spatial-temporal median filter. In this experiment, following the setting145

in [25], each DT sequence is divided into eight non-overlapping subsequences at different positions, which

are randomly selected. In addition, two subsequences are generated from the original sequence randomly

cut along the temporal axis. Thus, each original DT sequence generates ten subsequences with different

dimensions, which have the same class label of the original DT sequence. Fig. 5 shows some sample DTs

in the DynTex dataset.150

3.2. Parameter Selection and Implementation Details

The evaluation methodology on the two DT datasets is as follows: l DT sequences are randomly chosen

per class for training and the remaining sequences are used for testing. On the UCLA DT dataset, 1, 2

and 3 DT samples per class are randomly chosen to form the training set; On the DynTex dataset, 1, 3

and 5 DT samples per class are randomly chosen for the training set. For each setting, the experiments155
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Figure 4: Example DT sequences in the UCLA DT dataset.

Figure 5: Example DT sequences in the DynTex DT dataset.

are run 100 times and the average classification accuracy is reported. In the video set based collaborative

representation model, parameters λ1, λ2, λ3 and λ4 are set to 0.001. For each DT sequence in the UCLA

and DynTex datasets, 15 and 25 subsequences are generated by dividing the DT sequence into a set of

homogeneous videos in the temporal domain, respectively.

3.3. Experimental Results160

Evaluation of the proposed method : We denote our proposed video set based collaborative representation

method with the VLBP and LBP TOP descriptors by VSCR VLBP and VSCR LBPTOP. In the case of

different numbers of training DT samples, We compare the performance of VSCR LBPTOP on the two

DT datasets with the video set based DT descriptor in the case of different neighborhood points and radii,

denoted by V SCR LBPTOPPXY ,PY T ,PXT ,RX ,RY ,RT
, where PXY , PY T and PXT are the numbers of the165

neighboring points in the XY, YT and XT planes, RX , RY and RT are the radii of the neighborhood in

the XY, YT and XT planes, respectively. The experimental results on the UCLA and DynTex datasets

are listed in Tables 2 and 3, respectively. From the tables, one can see that the number of the neighboring

points is relatively large, such as PXY = PY T = PXT = 8, different radii have little effects on the final

classification accuracy. For example, when PXY = PY T = PXT = 8, for one training sample, the proposed170

method VSCR LBPTOP with RX = RY = RT = 1 can achieve classification accuracy of 96.35% while

VSCR LBPTOP with RX = RY = RT = 3 can achieve classification accuracy of 97.33% on the UCLA DT

dataset. On the Dyntex dataset, when PXY = PY T = PXT = 8, for one training sample, the proposed

method VSCR LBPTOP with RX = RY = RT = 1 can achieve classification accuracy of 83.49% while

VSCR LBPTOP with RX = RY = RT = 3 can achieve classification accuracy of 84.40%.175
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Table 2: Classification rates on the UCLA DT dataset by VSCR LBPTOP with different neighborhood points and radii.

Training DT samples 1 2 3

V SCR LBPTOP4,4,4,1,1,1 81.33% 87.4% 90.29%

V SCR LBPTOP8,8,8,1,1,1 96.35% 97.20% 99.43%

V SCR LBPTOP8,8,8,3,3,3 97.33% 98.15% 99.45%

Table 3: Classification rates on the DynTex DT dataset by VSCR with different neighborhood points and radii.

Training DT samples 1 3 5

V SCR LBPTOP4,4,4,1,1,1 81.90% 87.76% 88.57%

V SCR LBPTOP8,8,8,1,1,1 83.49% 92.24% 95.43%

V SCR LBPTOP8,8,8,3,3,3 84.40% 93.5% 96.25%

Comparison evaluation: We compare our proposed method with representative and recently developed

DT classification methods [13, 21, 31, 20]. In the case of 3 training DT samples, on the UCLA DT dataset, we

compare the proposed VSCR VLBP and VSCR LBPTOP to the state-of-the-art DT classification methods

[21, 13, 20, 31]. Table 4 lists the classification accuracies of the methods. The state-of-the-art classification

accuracies are 81.00% [21], 89.50% [13], 99.12% [20] with the nearest neighborhood classifier and 99.00%180

[31] with maximum margin learning. Our proposed VSCR VLBP and VSCR LBPTOP can achieve clas-

sification accuracies of 83.21% and 99.43%, respectively. From this table one can see that our proposed

VSCR LBPTOP method can achieve the best performance. Since in the cases of 1 and 2 training DT samples

the classification accuracies of [21, 13, 31, 20] are not available, we only compare our proposed method to the

LBP based DT methods [25] (VLBP and LBP TOP). Tables 5 and 6 list the comparison results on the UCLA185

and DynTex DT datasets. In VLBP and VSRC VLBP, PXY = PY T = PXT = 4 and RX = RY = RT = 1.

In LBP TOP and VSCR LBPTOP, PXY = PY T = PXT = 8 and RX = RY = RT = 1. From these

tables, we can see that the proposed VSCR method can achieve the best classification accuracy in almost

every case. The VSCR VLBP and VSCR LBPTOP methods are superior to the VLBP[25] method and the

LBP TOP[25] methods, respectively. This also implies that collaborative representation from other classes190

of DTs is helpful to classification. Particularly, on the UCLA DT dataset, compared to the LBP TOP

method, the proposed VSCR LBPTOP method can significantly improve the classification accuracy. For

example, in the cases of 1,2 and 3 training samples, the proposed VSCR VLBP method can obtain the

classification accuracies of 96.35%, 97.20% and 99.43% while the LBP TOP method can obtain the clas-

sification accuracies of 84.19%, 89.40% and 90.29%. In addition, because the number of the neighboring195

points is small (if the number of the neighboring points is large, the dimension of the LBP histogram is very

high), the VSCR VLBP method cannot obtain good performance on the UCLA and DynTex DT datasets

especially when there are limited training DT sequences.
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Table 4: Classification rates on the UCLA DT dataset in the case of 3 training DT sequences.

Methods [21] [13] [20] [31] V SCR V LBP V SCR LBPTOP

Classification rates 81.00% 89.50% 99.12% 99.00% 83.21% 99.43%

Table 5: Classification rates on the UCLA DT dataset by different methods.

Training DT samples 1 2 3

V LBP [25] 68.67% 77.60% 81.00%

V SCR V LBP 71.33% 80.20% 83.21%

LBP TOP [25] 84.19% 89.40% 90.29%

V SCR LBPTOP 96.35% 97.20% 99.43%

Table 6: Classification rates on the DynTex DT dataset by different methods.

Training DT samples 1 3 5

V LBP [25] 74.54% 82.31% 86.77%

V SCR V LBP 79.21% 85.32% 89.71%

LBP TOP [25] 82.29% 89.40% 93.71%

V SCR LBPTOP 83.49% 92.24% 95.43%

4. Conclusions

We proposed a video set based collaborative representation method for dynamic texture classification,200

which is simple to implement and demonstrates promising performance. Each DT sequence was divided

into subsequences to form the video set. The video set based DT descriptor with VLBP/LBP TOP was

extracted to represent the DT. Then, a collaborative representation model was proposed to use DT sub-

sequences from all classes to represent the query DT sequence to ensure representation accuracy while

reducing the intra-class variance. Finally, We used the representation residual associated with each class205

of training subsequences to classify DT. The proposed VSCR method was validated on two benchmark DT

datasets: UCLA and DynTex. The experimental results showed that our proposed method can achieve

good performance.
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[30] R. Péteri, S. Fazekas, M. J. Huiskes, Dyntex: A comprehensive database of dynamic textures, Pattern

Recognition Letters 31 (12) (2010) 1627–1632.

[31] B. Ghanem, N. Ahuja, Maximum margin distance learning for dynamic texture recognition, in: ECCV

(2), 2010, pp. 223–236.270

13


	Introduction
	Proposed Method
	Video Set Based DT Descriptor
	Video Set Based Collaborative Representation and Classification

	Experimental Evaluation
	Dynamic Texture Datasets
	Parameter Selection and Implementation Details
	Experimental Results

	Conclusions

