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Abstract

Recent advancements in generative adversarial nets (GANs)
and volumetric convolutional neural networks (CNNs) enable
generating 3D models from a probabilistic space. In this pa-
per, we have developed a novel GAN-based deep neural net-
work to obtain a better latent space for the generation of 3D
models. In the proposed method, an enhancer neural network
is introduced to extract information from other corresponding
domains (e.g. image) to improve the performance of the 3D
model generator, and the discriminative power of the unsu-
pervised shape features learned from the 3D model discrimi-
nator. Specifically, we train the 3D generative adversarial net-
works on 3D volumetric models, and at the same time, the en-
hancer network learns image features from rendered images.
Different from the traditional GAN architecture that uses un-
informative random vectors as inputs, we feed the high-level
image features learned from the enhancer into the 3D model
generator for better training. The evaluations on two large-
scale 3D model datasets, ShapeNet and ModelNet, demon-
strate that our proposed method can not only generate high-
quality 3D models, but also successfully learn discriminative
shape representation for classification and retrieval without
supervision.

In the recent decades, 3D model generation has attracted
increasing interests in computer vision community with ap-
plications in a wide range of fields, e.g. engineering, product
design. In early 3D model generation systems, new mod-
els were usually generated by mixing up several parts from
the existing models. With the emergence of depth sensors,
such as Microsoft Kinect and 3D LiDAR, it becomes pos-
sible to reconstruct 3D models from lower-cost captured
RGB-D images or point clouds. However, processing the
sensor captured images or point clouds is kind of compli-
cated and time-consuming, especially in some state-of-the-
art methods that infer 3D models from multi-view images or
depth maps. In this work, we consider constructing a gen-
erative model that could effectively synthesize high-quality
3D models without any image or depth map inputs.

The success of generative adversarial networks (GANs)
(Goodfellow et al. 2014) in computer vision field provides
us a hint to learn a generator via an adversarial process.
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By mapping a low-dimensional vector into a much more
complex target space, GANs have been proved its power-
ful generative ability with a number of applications mostly
in 2D image or text domain. 3D-GAN (Wu et al. 2016) and
PrGANs (Gadelha, Maji, and Wang 2016) are the first two
attempts to apply GANs technique on addressing 3D model
generation problem. Though their works are inspiring, most
of their generated models are incomplete with some holes or
multiple fragments. The causes might be that 1) they limit
their generators to be trained only on a single domain data
(3D models or projected images), and 2) their generators
are driven by uninformative random vectors. Different from
their works, we propose to learn an image-enhancer-driven
3D model generator from both 2D image (learned) features
and 3D volumetric data.

In this paper, we build our framework on 3D genera-
tive adversarial networks with an enhancer network for bet-
ter training a 3D model generator. The enhancer contains
two deep convolutional neural networks, and learns fea-
tures from images in an adversarial manner. The high-level
learned image features from the enhancer are fed into the
3D model generator for better generation. We train the two
networks together, so that our 3D model generator can be
learned from 3D data and 2D data simultaneously. Once the
framework has been trained, given a random vector, the en-
hancer first generates corresponding high-level image fea-
tures, and then the 3D model generator can synthesize a vol-
umetric 3D model based on the image features.

To comprehensively validate the performance of our pro-
posed method, we conduct experiments on two large-scale
datasets for different tasks, including 3D model genera-
tion, shape classification and shape retrieval. For the gen-
eration task, we train our proposed framework on 3D mod-
els and their rendered images from ShapeNet, and then
use the trained generator and partial enhancer to synthe-
size volumetric models. The generation results suggest that
our proposed method is able to generate high-quality 3D
models. For shape classification and shape retrieval tasks,
we train the framework on models and rendered images
from major categories of ShapeNet, but test it on ModelNet
dataset by extracting deep learned features from the trained
discriminator as shape representations. We report quanti-
tative analysis of shape classification and shape retrieval
on two popular subsets of ModelNet dataset (ModelNet10
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and ModelNet40). Our method achieves impressive perfor-
mance over other unsupervised state-of-the-art approaches
on shape classification and retrieval. In addition, we further
verify the effectiveness of the enhancer by conducting exper-
iments with the same setting using our framework without
enhancer. The large gap of performances demonstrates that
our enhancer can improve the training power of the frame-
work.

In summary, the main contributions of our work are three-
fold:
• To address the challenging 3D model generation problem,

we propose to learn a GAN-based 3D model generator
from 2D images and 3D models simultaneously.

• Instead of directly using the uninformative random vec-
tors, we introduce an image-enhancer-driven framework,
where an enhancer network learns and feeds the image
features into the 3D model generator for better training.

• The experimental results demonstrate that our proposed
framework can synthesize high-quality 3D models. More-
over, the unsupervised shape features learned by our
framework can achieve superior performance over most
of the state-of-the-art methods for shape classification and
shape retrieval on ModelNet dataset.
Our paper is organized as follows: in Section Related

Work, we review some recent works and concepts closely
related to our work, including generation models that in-
ferred 3D models from images or depth maps or random
vectors. In Section Approach, we describe the pipeline and
technical details of our approach. In Section Experiments,
we provide the qualitative 3D model generation result, eval-
uate the learned features on shape classification as well as
shape retrieval, and analyse the influences when feeding im-
age features from different layers of the enhancer. Finally,
we conclude our work in Section Conclusion.

Related Work
As one of the most significant topics in 3D computer vi-
sion area, 3D model generation has received many atten-
tions for years. Early attempts to generate 3D models were
mostly based on some templates or parts of existing 3D mod-
els, which synthesized new models by replacing or combin-
ing some parts of original models (Chaudhuri et al. 2011;
Funkhouser et al. 2004; Kalogerakis et al. 2012; Kim et al.
2013). With the advances in depth sensors, RGB-D images
of 3D models can be acquired easily, and as a consequence,
some researcher started to make some efforts on inferring
3D models from RGB images or depth maps. For example,
the system of Kar et al. (Kar et al. 2015) first segmented ob-
jects from the input image, then predicted the viewpoint of
the image, and finally generated the 3D model from Silhou-
ettes. In another example, Huang et al. (Huang, Wang, and
Koltun 2015) reconstructed 3D models from web image by
estimating the viewpoint on the image and then matching
correspondence between the image and existing models.

On the other hand, inspiring by the great success of ap-
plying deep learning techniques on various applications in
graphic and vision community, such as retrieval, classifica-
tion (LeCun et al. 1998; Sermanet et al. 2013; Fang et al.

2015; Xie et al. 2015; Zhu et al. 2015; Xie et al. 2017), many
researchers also tried to develop generative models using
deep learning techniques in their recent works. For example,
Choy et al. (Choy et al. 2016) proposed a recurrent deep neu-
ral network to learn a mapping from image to volumetric 3D
object generation. Based on image input, Fan et al. (Fan, Su,
and Guibas 2016) also used deep neural network to generate
3D models of point clouds. Different from the above meth-
ods that worked on static models and images, Slavcheva’s
work (Slavcheva et al. 2016) focused on real-time 3D ob-
ject generation. For the depth image field, Wu et al. (Wu
et al. 2015) pre-trained a deep neural network on volumet-
ric models to learn shape representations, and then used the
pre-trained network to generate and complete a volumetric
model from a single depth image. Although recent efforts
on deep learning have made impressive progress on tackling
3D model generation problem, most of the current existing
methods require images or depth maps as inputs when gen-
erating models.

Comparing to methods inferring 3D models from images
or depth maps, it is much more difficult to learn a genera-
tion model that can synthesize 3D models without image in-
puts. However, the recent advance of generative adversarial
networks (GANs) technique (Radford, Metz, and Chintala
2015; Shrivastava et al. 2016) provides us a great platform
to implement such kind of generative model. 3D-GAN (Wu
et al. 2016) is the first work to apply GANs technique in
3D model generation task, where a classic GANs architec-
ture is trained to map low-dimensional probabilistic space to
3D model space. They trained their generation model only
on 3D data. Another attempt is PrGANs(Gadelha, Maji, and
Wang 2016), where the authors trained a projector together
with a GANs framework. Their generator learned to gen-
erate 3D models, while their discriminator was trained to
distinguish projected images of real models from those pro-
jected from generative models. In this paper, we also focus
on the challenging 3D model generation problem. Desiring
the generative power of the GANs architecture, we build our
framework on the GANs architecture, and introduce an en-
hancer that feeds high-level image features into 3D model
generator for better training. Different from the above two
GAN-based 3D model generation approaches, our frame-
work is trained on both images and 3D models simultane-
ously.

Approach
In this section, we provide details of our method for 3D
model generation. We briefly describe the basic structure
and concepts of general generative adversarial networks fol-
lowed by the presentation for our proposed framework ar-
chitecture.

Generative Adversarial Networks (GANs)
Proposed by Goodfellow et al. (Goodfellow et al. 2014), a
classic generative adversarial networks (GANs) consist of
one generator G and one discriminator D, and both of the
generator and discriminator are multilayer neural networks.
Let x represents the real data (e.g. image, 3D model), and
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z be a vector randomly sampled from a uniform distribution
or Gaussian distribution. The generator takes z as input, and
outputs a generative data G(z), where G(z) should have the
same format as real data x. The discriminator takes either
real data x or generative data G(z) as input, and outputs a
confidence score (denoted as D(·)) whether the input data
is real or not. Ideally, the score is 1 when the discriminator
considers the input data is more like a real data. Otherwise,
the score is 0. During the training process, the generator is
learning to synthesize data G(z) as real as real data x, while
the discriminator is learning to improve its distinguish abil-
ity of real data. The generator and discriminator are usually
trained as a two-player minimax game with a competing loss
as

min
G

max
D

L = Ex∼px logD(x) + Ez∼pz log(1−D(G(z))).

(1)
The optimization of above loss function can be solved by

applying classical back-propagation algorithm. The param-
eters in the generator and the discriminator will be updated
separately in each epoch. Global optimum of the parameters
can be acquired when the generative data distribution pG(z)

is equal to the real data distribution px (pG(z) = px).

Enhancer Driven 3D Model Generation
By introducing an enhancer into a 3D model generator, our
approach aims to utilize the features learned from image
to improve the generative ability of the 3D model gener-
ator. Different from the traditional GAN architecture tak-
ing uninformative random vectors as inputs, we feed the
learned image features into the 3D generator for better gen-
eration. Therefore, our 3D model generator can be learned
not only from 3D data but also 2D images. Figure 1 shows
the pipeline of our proposed method, including the train-
ing framework and those used for 3D model generation and
shape feature extraction (testing). Figure 1a is the network
architecture of our method for training, which mainly con-
sists of three parts: an enhancer, a 3D model generator and a
3D model discriminator. We will present the structure of the
three parts separately in detail below.

Enhancer The purpose of the enhancer is to learn and
feed image features into the generator for better training
without supervision. We construct our enhancer with two
deep neural networks, which are trained in an adversarial
manner. We call them enhancer-generator GE and enhancer-
discriminator DE . The input to the enhancer is a 100-
dimension vector z randomly sampled from uniform dis-
tribution z ∈ ∪[−1, 1]. For the enhancer-generator GE , it
has six deconvolution layers with different numbers of chan-
nels {2048, 1024, 512, 256, 128, 3}, same kernel size (5×5)
and stride (2). Tangent activation is applied on the output
of last deconvolution layer to synthesize a 128 × 128 × 3
image. The structure of the enhancer-discriminator DE is
similar to the GE but with four convolution layers. The
channel sizes in the enhancer-discriminator DE are set to
{64, 128, 256, 512} in each convolution layer, respectively.
A fully-connected layer is attached after the final convolu-
tion layer to compute a final output, which is an estimated
probability DE(·) of whether the image is real or not. The

purpose of DE is to help the enhancer-generator GE better
learn the high-level features from images via an adversarial
manner. The loss function of the enhancer is described as

min
GE

max
DE

LE =Ex∼px
logDE(x)+

Ez∼pz log(1−DE(GE(z))),
(2)

where x here represents a real image from training dataset,
and GE(z) denotes a generative image synthesized from
GE . For convenience, we construct an image training
dataset using images rendered from 3D training models to
train the enhancer. Batch normalization and ReLU layer are
added between each two (de)convolution layers.

3D model generator and discriminator Our 3D model
generator GM is a deep neural network that maps the out-
puts of the enhancer-generator (learned image features) into
a complex volumetric 3D space. It includes four deconvo-
lution layers with channel size {256,128,64,1}, kernel size
4× 4× 4 and stride 2. Batch normalization and ReLU layer
are added to connect deconvolution layers. A Sigmoid layer
is applied after the final deconvolution layer. Taking im-
age features from the ith layer of the enhancer-generator
Gi

E(z) as input, the 3D model generator is able to cal-
culate a 64 × 64 × 64 volumetric 3D model (denoted as
GM (Gi

E(z))), as seen in Figure 1a. The 3D model gener-
ator is optimized by a 3D model discriminator DM with op-
posite structure of the generator. There are four convolution
layers in the 3D model discriminator DM with channel size
{64,128,256,512}, kernel size 4 × 4 × 4 and stride 2. The
output of the final convolution layer then passes through a
fully connected layer to calculate a probability DM (·). The
loss function for the 3D model generator and discriminator
network can be designed as

min
GM

max
DM

LM =Ey∼py logDM (y)+

Ez∼pz log(1−DM (GM (Gi
E(z)))),

(3)

where y is a 64 × 64 × 64 3D model voxelized from a
training model, DM (y) denotes the probability that input
model y is real, and DM (GM (Gi

E(z))) represents the
probability that generated model GM (Gi

E(z)) is real.

Learning We train the enhancer network and the 3D
model generator and discriminator network together by op-
timizing the following objective function

min
GE ,GM

max
DE ,DM

L = LE + LM . (4)

For generators (GE and GM ), they are optimized towards
minimizing the value of the objective function, while dis-
criminators (DE and DM ) are trained to maximize the value
of the objective function.

We use ADAM (Kingma and Ba 2014) optimizer to
obtain the optimal network parameters with beta value
β = 0.5 and learning rate 0.0002 for generators and
discriminators. Observing that the discriminators always
learn faster than the generators, we use a simple but useful
strategy that updates the generators twice more than the
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(a) The framework of our proposed method for training. It consists of three parts: an enhancer, a 3D model generator and a 3D model
discriminator. The enhancer contains two deep neural networks and learns features from rendered images via an adversarial manner. The 3D
model generator is trained on 3D data with the 3D model discriminator. By feeding the outputs from the first layer of the enhancer into the
3D model generator, the learned high-level image feature from enhancer can be utilized for better training a 3D model generator.
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(b) The framework for 3D model generation (testing). After train-
ing, given the outputs of the first layer of the enhancer (computed
based on a random vector), our trained 3D model generator is able
to synthesize a 64× 64× 64 3D volumetric model.
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(c) The framework of feature extraction for classification and re-
trieval. Given a volumetric 3D model, we concatenate the max
pooling outputs of the last three convolution layers in the discrim-
inator as the shape representation.

Figure 1: The framework of our proposed method. Figure 1a is the network architecture of our method for training, while figures
1b and 1c show the frameworks that we use to generate 3D models (testing) and extract features for classification and retrieval
(testing), respectively.

discriminators in each batch when training our framework.
The batch size is set to 64. We implement our framework
using the popular deep learning tool TensorFlow (Abadi et
al. 2016) and train it on a desktop with Intel Xeon E5-2603
CPU and NVIDIA Tesla K80 GPU.

Generating 3D model and shape representation Due
to the properties of adversarial learning, obtaining a better
3D model generator can result in a greater 3D model dis-
criminator, which can generate more discriminative shape
representations. After training, we only use the 3D model
generator and partial enhancer for generating 3D models (as
shown in Figure 1b). Given a 100-dimension random vec-
tor z sampled from uniform distribution z ∈ ∪[−1, 1], we
first compute the outputs Gi

E(z) from the trained enhancer,
and then our trained 3D model generator can synthesize a

volumetric 3D model GM (Gi
E(z)) without any inferences

from images. For shape representation, given a volumetric
3D model, we concatenate the outputs after max pooling the
last three convolution layers of the 3D model discriminator
as the representation (as shown in Figure 1c).

Experiments
To comprehensively validate our proposed framework, we
conduct three different experiments on large-scale 3D model
datasets, including 3D model generation, shape classifica-
tion and shape retrieval. We present the experiment settings,
qualitative generation result, quantitative analysis for shape
classification and retrieval. The experimental result demon-
strates that our method can generate high-quality 3D models,
and successfully learn unsupervised features as shape rep-
resentation. In the shape classification and retrieval exper-
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Figure 2: Examples of our training dataset. 3D models from
ShapeNet (Chang et al. 2015) dataset are voxelized as 64 ×
64 × 64 volumetric ones. Corresponding images for each
3D model are randomly selected from one of 23 views of
rendered images in 3D-R2N2 dataset (Choy et al. 2016). As
we can see from the figure, view points of images might be
different.

iments, our method outperforms the-state-of-the-arts with
highest classification accuracy and retrieval precision. In ad-
dition, we verify the effectiveness of the enhancer by com-
paring shape classification and retrieval results using fea-
tures extracted from our framework trained with and without
enhancer. In all the three experiments, we choose to feed the
outputs of the first layer of the enhancer-generator into the
3D model generator. Discussion about the choices of layers
is also provided.

3D Model Generation
In this task, we train our proposed framework on large-scale
ShapeNet (Chang et al. 2015) dataset that contains more
than 50, 000 3D models with 55 categories. All 3D training
models are voxelized as 64× 64× 64 volumetric ones. 3D-
R2N2 (Choy et al. 2016) provides a dataset that includes ren-
dered images from 3D models in ShapeNet from 23 differ-
ent views. We randomly select one rendered image for each
training model to construct the image dataset to train the en-
hancer. Some examples of our training dataset are shown in
Figure 2. The volumetric models are input into 3D model
discriminator, while the rendered images are inputs to the
enhancer-discriminator. For each training epoch, volumetric
3D models and their corresponding images are utilized to-
gether to train our framework.

To obtain better generative models, we train one 3D
model generator for each category. After training, we ran-
domly sample a 100-dimension vector from uniform distri-
bution [−1, 1] and then pass it through the first layer of the
enhancer-generator and the 3D model generator to synthe-
size a volumetric 3D model. No image is needed when gen-
erating 3D models.

Figure 3 shows some generative models for major cate-
gories in ShapeNet. Models in Figure 3a are generated by
our proposed method, including airplane, car, chair, table
and sofa. The generation result suggests that our 3D model
generator can synthesize varied 3D models with high resolu-
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(a) Examples of 3D models generated by our proposed method.
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(b) Examples of 3D models generated by (Wu et al. 2016).

Figure 3: Comparion of 3D model generation results. Fig-
ure 3a shows examples of 3D models generated from our
trained generators, one row for each category (e.g. airplane,
car, chair, table, sofa). For comparison, we also show some
models generated using state-of-the-art 3D-GAN (Wu et al.
2016) (in Figure 3b). Our framework can generate high-
quality 3D models with size 64 × 64 × 64, which is com-
parable even better than those generated from 3D-GAN.

tion size 64× 64× 64. For comparison, we also show some
models generated by the state-of-the-art 3D-GAN (Wu et al.
2016). All 3D models in Figure 3b are synthesized using the
pretrained generators provided by the authors. As we can see
from the figure, our framework can generate high-quality 3D
models, which is comparable even better than those gener-
ated from 3D-GAN. In addition, we also observe that most
of the table models generated by (Wu et al. 2016) are more
likely to be small side tables, but ours are bigger rectangle
tables. The reason could be most of table models in their
training dataset are manually selected side tables, but we
used the table dataset in ShapeNet where most of the tables
have rectangle shapes. Due to a lack of quantitative criteria
to evaluate the generation quality, we below provide shape
classification and retrieval results for quantitative compari-
son.

Shape Classification
Following the experiment setting in 3D-GAN (Wu et al.
2016) for fair comparison, we pretrain a framework on 3D
models and their rendered images from seven major cat-
egories (e.g. chair, couch, gun, airplane, watercraft, table
and car) in ShapeNet without label information. A max
pooling layer is added after each convolution layer of the
trained 3D model discriminator with kernel sizes {8,4,2},
stride size {4,2,1}, respectively. Then, we input 3D mod-
els from ModelNet (Wu et al. 2015) into the trained 3D
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Table 1: Performance comparison of shape classification with state-of-the-art methods on two benchmarks (ModelNet10 and
ModelNet40) of ModelNet dataset.

Method Supervised? ModelNet10 (%) ModelNet40 (%)
3D ShapeNets(Wu et al. 2015) � 83.54 77.32
VoxNet (Maturana and Scherer 2015) � 92.00 83.00
Geometry Image (Sinha, Bai, and Ramani 2016) � 88.40 83.90
PointNet (Qi et al. 2017) � 77.60 –
GIFT (Bai et al. 2016) � 92.35 83.10
FusionNet (Hegde and Zadeh 2016), fine-tuned � 93.11 90.80
SPH (Kazhdan, Funkhouser, and Rusinkiewicz ) × 79.79 68.23
LFD (Chen et al. 2003) × 79.87 75.47
VConv-DAE (Sharma, Grau, and Fritz 2016) × 80.50 75.50
3D-GAN (Wu et al. 2016) × 91.00 83.30
Our Method without Enhancer × 88.88 85.53
Our Method with Enhancer × 91.63 87.85

model discriminator and concatenate the features extracted
from each convolution layer (after max pooling) as shape
representations. Finally, we train a linear SVM upon the ex-
tracted 57, 344-dimensional features of models from Mod-
elNet training sets, while the 3D models from the ModelNet
test sets are used for testing.

We apply our proposed framework on two popular sub-
sets of ModelNet (ModelNet10 and ModelNet40) for shape
classification, and present the comparison with other state-
of-the-art methods. The ModelNet10 subset contains 4, 899
models from 10 different categories, which are split into a
training set with 3, 991 models and a testing set with 908
models. The ModelNet40 subset has a total of 12, 311 mod-
els from 40 categories, split into a training set and a test-
ing set with size 9, 843 and 2, 468, respectively. We re-
port the classification performance on testing sets in Ta-
ble 1. The classification accuracy of our method is pretty
high (91.63% on ModelNet10 and 87.85% on ModelNet40),
which demonstrates that the shape features our framework
learned are highly discriminative.

We collect the publicly available results of state-of-the-art
approaches from the ModelNet dataset website 1 for com-
parison, including supervised methods and unsupervised de-
scriptors. Seen from Table 1, though our method is training
on a subset of ShapeNet, it can obtain comparable perfor-
mance with some supervised methods, such as VoxNet (Mat-
urana and Scherer 2015), GIFT (Bai et al. 2016) and Fusion-
Net (Hegde and Zadeh 2016), and get higher classification
accuracy than other supervised methods, e.g., 3D ShapeNets
(Wu et al. 2015), Geometry Image (Sinha, Bai, and Ra-
mani 2016), PointNet (Qi et al. 2017). Besides, we compare
our method with some state-of-the-art unsupervised meth-
ods, such as SPherical Harmonic descriptor (SPH) (Kazh-
dan, Funkhouser, and Rusinkiewicz ), Light Field Descrip-
tor (LFD) (Chen et al. 2003), VConv-DAE (Sharma, Grau,
and Fritz 2016) and 3D-GAN (Wu et al. 2016). Our method
achieves the best performance over above methods on both
ModelNet10 and ModelNet40 dataset. We also provide the
classification performance using our framework without en-

1http://modelnet.cs.princeton.edu

hancer with exactly same experimental settings as the one
with enhancer, e.g., batch size, learning rate, epoch. Same
max pooling are applied to exact features. Though our
framework without enhancer has the same architecture as
3D-GAN, it obtains a worse classification accuracy in Mod-
elNet10 and a better accuracy in ModelNet40 than that re-
ported in 3D-GAN paper. The reason could be the differ-
ences of initial parameter setting, training strategy and the
number of training epochs. Importantly, the improvement
of the performance using the framework with the enhancer
clearly demonstrates the effectiveness of the enhancer.

Shape Retrieval
In addition to shape classification, we use the learned fea-
tures for shape retrieval on ModelNet10 and ModelNet40
datasets. In this task, we extract shape features following the
same way as mentioned in above shape classification task.
Models in test sets are used as queries to retrieve relevant
models in the same set. For each pair of models, Euclidean
distance between their 57, 344-dimensional representations
is calculated. The smaller the distance is, the more relevant
the two models are. For each query, we can obtain a ranked
list of models based on the calculated distance in an as-
cending order. Only models from the same category as the
query’s are considered as relevant models. The best case is
that all relevant models are ranked at the top of the retrieval
list.

To evaluate the performance of retrieval, we compute
retrieval precision for each query and report the average
in Table 2. Our method (with enhancer) achieves high
precision 65.00% in ModelNet10 with large margin over
other unsupervised state-of-the-art methods, such as 20%
higher than SPherical Harmonic descriptor (SPH) (Kazh-
dan, Funkhouser, and Rusinkiewicz ), 15% higher than Light
Field Descriptor (LFD) (Chen et al. 2003). For ModelNet40,
our method obtain a 44.44% MAP, which is 10% and 4%
higher than SPH and LFD, respectively. Since the author of
3D-GAN did not provide a pretrained model for feature ex-
traction or source code of a trainable model, we cannot ob-
tain the retrieval performance using the original 3D-GAN
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Table 2: Mean average precision (MAP) comparison of
shape retrieval with state-of-the-art unsupervised methods
on two benchmarks (ModelNet10 and ModelNet40) of Mod-
elNet dataset.

Method retrieval MAP (%)

ModelNet10 ModelNet40
SPH 44.05 33.26
LFD 49.82 40.91
Ours without Enhancer 61.82 40.81
Ours with Enhancer 65.00 44.44
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Figure 4: Precision-Recall plots for shape retrieval compari-
son of state-of-the-art methods on two benchmarks (Model-
Net10 and ModelNet40) of ModelNet dataset.

model. However, our method without enhancer actually is
a self-implemented version of 3D-GAN, so we provide the
performance using our method without enhancer as a com-
parison. As we can see in the Table 2, our method with-
out enhancer can obtain 61.82% precision in ModelNet10
dataset and 40.81% in ModelNet40 dataset. Although per-
formance of our method without enhancer is comparable
with state-of-the-art unsupervised descriptors, our method
with enhancer performs the best. Moreover, the large gap of
the MAPs between them illustrates that the augmented en-
hancer can significantly improve the learning performance.

Precision-recall (PR) curve is usually used to visually
indicate the relation between precision and recall for all
queries. We plot the PR-curves of all compared methods in
Figure 4, where our method outperforms other unsupervised
approaches with more than 10% in ModelNet10 and more
than 5% in ModelNet40 when recall reaches 1.0.

Analysis on Image Feature Layers
In this subsection, we discuss the influences when different
image feature layer outputs are chosen to feed into the model
generator. We remain the same network structure of the 3D

Table 3: Shape classification accuracy comparison of our
proposed method with image features generated from dif-
ferent layer of the enhancer-generator on ModelNet dataset.

Image Feature Layer Classification Accuracy (%)

ModelNet10 ModelNet40

None 88.88 85.53
1st 91.63 87.85
2nd 91.52 87.12
3rd 90.42 86.34

model generator and discriminator (as mentioned in Section
Approach) but change some channel sizes of the enhancer-
generator, so that the outputs from different layers of the
enhancer-generator can be fed into the 3D model generator.
We report the classification performances when training our
method with the image features generated from 1st to 3rd
layer of the enhancer-generator in Table 3. As we can see
from the table, the accuracy has a slight decrease when feed-
ing the image features from the layer closer to the final out-
put of the enhancer-generator. It is reasonable because the
layer closer to the final output generates lower-level features,
which looks more like an “image” but further away from a
better latent space. Therefore, the framework would gener-
ate easy-identified “unreal” 3D models. As a consequence,
the discriminator cannot be improved. Since our proposed
method obtains the best performance when training with the
image features from the first layer, we choose to feed the
outputs from the first layer of the enhancer-generator into
the 3D model generator in other experiments, such as gener-
ation, classification and retrieval.

Conclusion
In this paper, we tackle the challenging 3D model gener-
ation problem by learning a 3D model generator with im-
age features. We propose to design an enhancer to learn fea-
tures from rendered images and feed the high-level image
features generated from the first layer of the enhancer into
the 3D model generator for better training. After training,
given random vector inputs, the trained 3D model generator
can be used to synthesize volumetric models based on the
first layer outputs of the enhancer-generator. The qualitative
generation results on ShapeNet demonstrate that our pro-
posed framework is able to generate high-quality 3D mod-
els with high resolution. Moreover, we use the shape fea-
tures learned from our framework to classify and retrieve
shapes on two subsets of ModelNet dataset, including Mod-
elNet10 and ModelNet40. The superior classification and re-
trieval performance over state-of-the-art methods suggests
that our framework can learn a highly discriminative shape
representation without supervision. In order to verify the ef-
fectiveness of our designed enhancer, we compare the shape
classification and retrieval performances of our frameworks
with enhancer and without enhancer. The higher classifica-
tion and retrieval accuracies imply the training power of the
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enhancer.
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