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Abstract

The explosive growth of 3D models has led to the pressing
demand for an efficient searching system. Traditional model-
based search is usually not convenient, since people don’t
always have 3D model available by side. The sketch-based
3D shape retrieval is a promising candidate due to its simple-
ness and efficiency. The main challenge for sketch-based 3D
shape retrieval is the discrepancy across different domains. In
the paper, we propose a novel deep correlated metric learning
(DCML) method to mitigate the discrepancy between sketch
and 3D shape domains. The proposed DCML trains two dis-
tinct deep neural networks (one for each domain) jointly with
one loss, which learns two deep nonlinear transformations
to map features from both domains into a nonlinear feature
space. The proposed loss, including discriminative loss and
correlation loss, aims to increase the discrimination of fea-
tures within each domain as well as the correlation between
different domains. In the transfered space, the discrimina-
tive loss minimizes the intra-class distance of the deep trans-
formed features and maximizes the inter-class distance of the
deep transformed features at least a predefined margin within
each domain, while the correlation loss focuses on minimiz-
ing the distribution discrepancy across different domains. Our
proposed method is evaluated on SHREC 2013 and 2014
benchmarks, and the experimental results demonstrate the
superiority of our proposed method over the state-of-the-art
methods.

Introduction
With the advanced development of digitalization techniques,
3D models are widely available in our daily lives across
many areas, such as 3D printing, medical imaging and enter-
tainment. The vast amounts of 3D model lead to the press-
ing demand for effectively searching the desired 3D mod-
els. Traditional text-based search could not work well for
two main reasons, 1) Only a small number of 3D models are
available with text descriptions, which is too limited to re-
trieve desired 3D models. 2) It is often very hard to describe
the very detailed information of complex 3D models simply
with texts. Therefore, researchers proposed content-based
3D model retrieval framework, which mainly includes two
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categories, example-based 3D shape retrieval and sketch-
based 3D shape retrieval. Most of the existing works fall into
the first group, which is provided with a query 3D model and
returns similar models. Example-based 3D shape retrieval is
quite straightforward, however, not convenient, since people
usually don’t always have the desired 3D model example
available at hand. Recently, the sketch-based 3D shape re-
trieval has received more and more attention from computer
vision and computer graphics communities. Compared to
the example-based framework, the sketches are much more
convenient and easier to get, even a young kid could draw
simple and comprehensive sketches. Apart from simpleness,
sketch is also informative since it is very easy for people to
understand the class labels for simple query sketches.

Despite of all the advantages of sketch-based 3D shape
retrieval, actually, it is a quite challenging problem. First,
sketch and 3D shape come from two different modalities
with huge gap. And features extracted from both modali-
ties follow quite different distributions, which makes it very
difficult to directly retrieve 3D shapes from query sketches.
Secondly, sketches are usually very simple with only sev-
eral lines. The simpleness, on the contrary, also makes the
sketch contain very limited information. The 3D shapes look
visually similar as the query sketches only from some cer-
tain view angles. Generally, it is very hard to find the “best
views” to project 3D shapes, which makes both sketches and
3D shapes visually similar.

The main challenge for sketch-based 3D shape retrieval is
the domain discrepancies between these two modalities. In
this work, we propose a novel deep correlated metric learn-
ing (DCML) method to mitigate the discrepancies between
sketch and 3D shape domains. We first extract low-level
features for both sketches and 3D shapes. For sketch, we
use pre-trained AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) to extract features. For 3D shape, we extract 3D-
SIFT feature (Darom and Keller 2012), which is further en-
coded by locality-constrained linear coding (LLC) (Wang et
al. 2010) to get a global shape descriptor. Then we learn two
deep neural networks to transform the raw features of both
domains into a nonlinear feature space, mitigating the do-
main discrepancy as well as maintaining the discriminations.
The loss of the proposed network includes two terms, dis-
criminative term which is constructed with the pairwise dis-
tance within each domain and correlation term which is con-
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Figure 1: The detailed framework of our proposed deep cor-
related metric learning network. The whole network struc-
ture mainly includes two components, source domain net-
work and target domain network.

structed with the pairwise distance across different domains.
The former one minimizes the variations of the deep learned
features from the same class and maximizes the variations of
the deep learned features from different classes within each
domain; the latter one aims to alleviate the domain discrep-
ancy, making the distributions of both domains as consistent
as possible. We verify our proposed method on two large
scale benchmarks, SHREC 2013 and 2014 datasets, and the
experimental results demonstrate the superiority of our pro-
posed method.

The main contribution of our work is that we develop a
novel deep correlated metric learning method for sketch-
shape cross-domain retrieval, which jointly trains two deep
neural networks with one loss to learn two deep nonlin-
ear transformations, one for each domain. The deep learned
transformations could map both sketch and shape features
from the original space into a nonlinear feature space, main-
taining both discrimination within each domain and corre-
lation across different domains. Thus, the distance of the
deep learned features from the same class is minimized
while the distance of the deep learned features from dif-
ferent classes is maximized by a large margin within each
domain; the distribution discrepancy is alleviated by opti-
mizing pairwise across-domain distances. Thus, the deep
transformed features are both discriminative within each do-
main and distribution-consistency across different domains.
Therefore, our deep learned features could effective improve
the performance of sketch-shape retrieval task.

Related work
Most of the existing works about 3D shape retrieval is the
example-based framework, which could be roughly classi-
fied into three categories, projection based methods, diffu-
sion based methods and deep learning based methods. For
the projection based methods, 3D shapes are projected into
a set of 2D images, so that classic image features are adopted
to construct shape descriptor, such as LFD (Chen et al. 2003)
and ED (Shih, Lee, and Wang 2007). For the diffusion based

methods, 3D shape descriptors are derived based on heat
diffusion or probability distribution of quantum particles,
such as HKS (Sun, Ovsjanikov, and Guibas 2009) and WKS
(Aubry, Schlickewei, and Cremers 2011). All the aforemen-
tioned methods are just hand-crafted. Inspired by the great
success of deep learning in 2D images areas, deep learn-
ing is also introduced to 3D areas for shape retrieval. (Xie
et al. 2015) use discriminative auto-encoder to extract ro-
bust shape descriptor in the hidden layers. (Bai et al. 2015)
also proposed a two layer encoding framework for 3D shape
matching.

Except for the example-based framework, the sketch-
based framework is another promising candidate for re-
trieving desired 3D shapes. Currently, there are very few
works about sketch-based 3D shape retrieval. (Daras and
Axenopoulos 2010) proposed a unified 3D shape retrieval
system supporting multimedia queries by projecting 3D
models into a group of 2D images. The similarities among
different models are determined by features extracted from
2D images. (Bronstein et al. 2011) applied bag-of-features
(BoF), which was widely used in 2D computer vision, for
3D shape retrieval. In addition, (Eitz et al. 2012) further
adopted BoF with Gabor local line based feature (GALIF)
for sketch-based 3D shape retrieval. Apart from BoF encod-
ing scheme, (Biasotti et al. 2015) applied the LLC (Wang
et al. 2010) scheme for textured 3D shape retrieval. Apart
from the aforementioned algorithms, large scale benchmark
datasets have also been recently proposed to evaluate the
performance of different methods, such as SHREC 2013 (Li
et al. 2014) and SHREC 2014 (Li et al. 2015). Sketches of
both datasets come from a latest large sketch collection (Eitz
et al. 2012). The 3D shapes of SHREC 2013 are mainly
collected from Princeton Shape Benchmark (Shilane et al.
2004), while the shapes of SHREC 2014 come from various
sources, such as (Tatsuma, Koyanagi, and Aono 2012) and
(Li et al. 2012). Different comparison results are reported
for both datasets. For SHREC 2013, the best reported result
in (Li et al. 2014) is from view clustering and shape context
matching (SBR-VC). For SHREC 2014, the best reported re-
sult in (Li et al. 2015) is from overlapped pyramid of HOG
and similarity constrained manifold ranking, by Tatsuma et
al.

Recently, deep metric learning has received more and
more attention from the computer vision community. Com-
pared to traditional metric learning with a simple linear
transformation, deep metric learning inherits advantages
from the existing deep learning techniques (Krizhevsky,
Sutskever, and Hinton 2012) and could learn much more
complex, powerful nonlinear transformation. (Chopra, Had-
sell, and LeCun 2005) adopts Siamese network to learn im-
age similarities for face verifications. Generalizing the ideas
in both (Chopra, Hadsell, and LeCun 2005) and large margin
distance metric learning (Weinberger and Saul 2009), (Hu,
Lu, and Tan 2014) proposed a discriminative deep metric
learning for face verification, with a marginal distance be-
tween positive pair and negative pair. Instead of randomly
selecting training pairs in (Hu, Lu, and Tan 2014), (Song et
al. 2015) considers all the possible positive pairs and neg-
ative pairs in the training set for deep metric learning. Dif-
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ferent from deep metric learning with Siamese network in
(Chopra, Hadsell, and LeCun 2005; Hu, Lu, and Tan 2014),
which adopts pairwise training strategy with two input sam-
ples, (Hoffer and Ailon 2015) adopts triplet structure for
deep metric learning. Specifically, the triplet structure uses
three identical networks with three input examples, one base
example, its positive example and negative example. Ex-
cept for the application of deep metric learning in 2D im-
age areas, it is also introduced to 3D shape areas (Wang,
Kang, and Li 2015). (Wang, Kang, and Li 2015) extended
the Siamese network for sketch-based 3D shape retrieval by
using two based Siamese networks, one for sketch domain
and one for 3D shape domain. Their method is based on a
strong assumption that all the 3D models are stored upright,
which makes it much easier to choose the project view of
3D model. Such assumption can hardly be guaranteed in real
application, and without such assumption, it is actually very
hard to choose the “best” projection view. The projection re-
sults could change greatly, as the view changes.

It is noted that (Wang, Kang, and Li 2015) used similar
framework as our proposed method, by extending Siamese
network (Chopra, Hadsell, and LeCun 2005) for sketch-
based 3D shape retrieval. There are several differences be-
tween (Wang, Kang, and Li 2015) and our proposed method:
1) (Wang, Kang, and Li 2015) needs to project 3D model
into two different views with a strong assumption that all
models are stored upright as default. In fact, the projec-
tion results could change dramatically as the projection view
changes. However, our proposed method doesn’t need pro-
jection, neither does the upright assumption. 2) Our pro-
posed method employs a marginal distance for metric learn-
ing to increase the discrimination of the deep learned fea-
tures, while (Wang, Kang, and Li 2015) does not. 3) Our pro-
posed method could outperform (Wang, Kang, and Li 2015)
on both SHREC 2013 and 2014 datasets.

Proposed approach

We propose a novel deep correlated metric learning method
for sketch-based 3D shape retrieval. Fig. 1 shows the de-
tailed framework of our proposed method. The proposed
networks consist of two components, one for sketch domain,
referred as source domain network (SDN), and one for 3D
shape domain, referred as target domain network (TDN).
The proposed method trains both deep neural networks si-
multaneously with one loss. The loss function includes two
terms, discrimination term and correlation term, which min-
imizes intra-class variations and maximizes inter-class vari-
ations within each domain and guarantees the distribution-
consistency across different domains.

The proposed method mainly includes two steps: 1) Ex-
tracting low-level features for both sketches and 3D shapes.
2) Learning two deep nonlinear transforms to map features
of both domains from the original space into a nonlinear fea-
ture space, increasing the discrimination of features within
each domain as well as mitigating the discrepancy across
different domains. The details for each step are introduced
as follows.

Feature extraction
Features for both sketches and shapes are extracted sepa-
rately.

Sketch: Inspired by the outstanding performance of
convolutional neural network (CNN) in feature learning
(Krizhevsky, Sutskever, and Hinton 2012), we fine-tune
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) on
sketch dataset and then extract the features in “fc7” layer.
The feature dimension is 4096.

3D shape: Inspired by Lowe’s SIFT (Lowe 2004) in 2D
images, (Darom and Keller 2012) extended it into 3D mesh
and proposed 3D-SIFT by detecting interest points. We first
extract 3D-SIFT for 3D shapes, which are further encoded
with the LLC (Wang et al. 2010) scheme to get a global
shape descriptor. Readers could refer to (Darom and Keller
2012) and (Wang et al. 2010) for more details about 3D-
SIFT and LLC.

Deep correlated metric learning
We denote training examples from source domain (sketch
domain) and target domain (3D shape domain) as S =
{x1, x2, x3, ...} and T = {y1, y2, y3, ...}, respectively. The
transfer functions for SDN and TDN are denoted as fs :
x → fs(x) and f t : y → f t(y), respectively. In addition,
W s

k , W t
k and bsk, btk are the weights and bias, connecting

layer k and layer k + 1 of SDN and TDN, respectively; the
activations of the i-th example xi from S and j-th example
yj from T in the k-th layer of SDN and TDN are denoted as
ai,sk and aj,tk , respectively,

ai,sk+1 = σ(W s
ka

i,s
k + bsk) = σ(ri,sk+1)

aj,tk+1 = σ(W t
ka

j,t
k + btk) = σ(rj,tk+1)

(1)

where σ(x) is the sigmoid function σ(x) = 1
1+e−x , ri,sk+1 =

W s
ka

i,s
k +bsk, rj,tk+1 = W t

ka
j,t
k +btk. Ks and Kt denote the to-

tal number of layers for SDN and TDN, respectively. Thus,
the nonlinear transfer function fs(xi) and f t(yj) across Ks

and Kt layers of SDN and TDN respectively, can be repre-
sented as follows,

fs(xi) = ai,sKs
f t(yj) = aj,tKt

. (2)

The features extracted from different domains, sketch and
3D shape, suffer the domain discrepancy. Such discrepancy
makes it very difficult to directly conduct across-domain re-
trieval. To effectively perform cross-domain retrieval, the
features from both domains should address the following
two issues: 1) Within each domain, the features should be
as discriminative as possible, 2) Across different domains,
the distributions of features from both domains should be
as consistent as possible. To this end, we proposed a novel
deep correlated metric learning method to mitigate the dis-
crepancy across different domains as well as increase the
discrimination within each domain. The proposed method
learns two distinct deep neural networks (different weights
and different structures) simultaneously to transform fea-
tures from both domains into a nonlinear feature space. The
proposed loss L mainly includes two terms, discriminative
term Ld and correlation term Lc,
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L = αLd + (1− α)Lc + λ(‖W s‖2F + ‖W t‖2F ) (3)

where Ld aims to minimize intra-class distance of deep
transformed features and maximize inter-class distance of
deep transformed features with a predefined margin h within
each domain. And Lc optimizes the pairwise across-domain
distance to mitigate the distribution inconsistency across
different domains. Parameter α is the weight to balance
between discrimination term and correlation term. W s =
{W s

1 ,W
s
2 , · · · ,W s

Ks
} and W t = {W t

1 ,W
t
2 , · · · ,W t

Kt
}.

‖W s‖2F and ‖W t‖2F denote the Frobenius norm of W s and
W t respectively, which are used to avoid over-fitting.

Discrimination term The discrimination term Ld aims to
minimize intra-class distance and maximize inter-class dis-
tance within each domain, where Ld

s and Ld
t denote source

domain discriminative loss and target domain discriminative
loss, respectively,

Ld = Ld
s + Ld

t . (4)

The source domain discriminative term Ld
s could be

rewritten as follows:

Ld
s =

∑
(xi,xj)∈P s

ds+(xi, xj) +
∑

(xi,xj)∈Ns

ds−(xi, xj)

ds+(xi, xj) = ‖fs(xi)− fs(xj)‖22
ds−(xi, xj) = max{0, h− ‖fs(xi)− fs(xj)‖22}

(5)

where P s and Ns denote the sets of positive pair and neg-
ative pair in source domain S, respectively. The first term
minimizes the distance of positive pairs, while the second
term is a hinge loss, which pushes away the distance of neg-
ative pairs at least a predefined margin h. Similarly, we could
formulate Ld

t as follows:

Ld
t =

∑
(yi,yj)∈P t

dt+(yi, yj) +
∑

(yi,yj)∈Nt

dt−(yi, yj)

dt+(yi, yj) = ‖f t(yi)− f t(yj)‖22
dt−(yi, yj) = max{0, h− ‖f t(yi)− f t(yj)‖22}

(6)

where P t and N t denote the sets of positive pair and nega-
tive pair in target domain T , respectively.

The overall discriminative loss Ld minimizes intra-class
distance and maximizes inter-class by a large margin within
both source and target domains.

Correlation term Features from both domains follow dif-
ferent distributions, which makes it hard to directly retrieve
objects across different modalities. Thus, a correlation term
is further imposed to maintain the distribution consistency
across different domains. The correlation term includes two

types of pairwise across-domain distances, Lc
1 and Lc

2,

Lc = Lc
1 + Lc

2

Lc
1 =

∑
(xi,yj)∈P c

dc+(xi, yj) +
∑

(xi,yj)∈Nc

dc−(xi, yj)

Lc
2 =

∑
cs,ct

∑
∀xi,xj∈cs
∀yi,yj∈ct

R(xi, xj , yi, yj)

−
c�=d∑
cs,dt

∑
∀xi,xj∈cs
∀yi,yj∈dt

R(xi, xj , yi, yj)

(7)

where P c and N c denote the sets of positive pairs and neg-
ative pairs across different domains. Lc

1 directly minimizes
the distances of positive across-domain pair examples, and
maximizes the distances of negative across-domain pair ex-
amples at least h, making the distributions of two domains
as similar as possible. cs and ct denote the set of exam-
ples with class label c for source domain and target domain
respectively. Except for Lc

1, Lc
2 is further imposed to guar-

antee the distribution-consistency across different domains.
dc+(xi, yj), dc−(xi, yj) and R are listed as follows,

dc+(xi, yj) = ‖fs(xi)− f t(yj)‖22
dc−(xi, yj) = max{0, h− ‖fs(xi)− f t(yj)‖22}
R(xi, xj , yi, yj) =

(√
‖fs(xi)− fs(xj)‖22−

√
‖f t(yi)− f t(yj)‖22

)2

.

(8)

In Lc
2, xi and xj are from the same class, so do yi and yj .

If (xi, xj) and (yi, yj) are from the same class, R is mini-
mized; otherwise, R is maximized. Every term in the pro-
posed loss is differentiable, thus the proposed DCML net-
work could be optimized through back-propagation with the
stochastic gradient descent method.

airplane ant axe barn bed bee beer mug bench 

bicycle binoculars book brain bridge bush butterfly cabinet 

Figure 2: Example of sketches and shapes from SHREC
2013 dataset.

Experiments
Our proposed method is evaluated on two benchmark
datasets, SHREC 2013 (Shilane et al. 2004) and SHREC
2014 (Li et al. 2015). We first visualize the distribution of
our deep learned sketch and 3D shape features, then we draw
precision-recall curve to visualize the retrieval performance
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of our proposed method and the state-of-the-art methods.
Finally, we also calculate a number of standard metrics to
evaluate our proposed method, including nearest neighbor
(NN), first tier (FT), second tier (ST), discounted cumulative
gain (DCG) and mean average precision (mAP). For all the
evaluation criterion, our proposed method could outperform
the state-of-the-art methods on both datasets, particularly on
SHREC 2013 with a huge margin.

Implementation details
In this subsection, we mainly introduce the implementation
details for our proposed method. For feature extraction, the
sketch feature is extracted from the “fc7” layer of AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) with the feature
size of 4096, while for 3D shape, the feature size of 3D-SIFT
is set to 128. In addition, the size of the codebook for LLC
is set to 4096, which is generated by regular k-means clus-
tering. The network structures for the sketch and 3D shape
domains are set to [4096 2000 1000 100] and [4096 2000
1000 500 100], respectively. In addition, the momentum rate
is set to 0.1, learning rate is set to 0.015.

Retrieval on SHREC 2013 dataset

Airplane 

Chair 

Potted 
plant 

Hand 

Hot air 
balloon 

Horse 

Ice 
cream 

Pickup 
truck 

Figure 3: Illustration of retrieved examples on SHREC 2013
dataset.

In this section, we evaluate our proposed method on
SHREC 2013 dataset. SHREC 2013 (Li et al. 2014) is large
scale benchmark to evaluate algorithms for sketch-based 3D
shape retrieval. The benchmark is created by collecting com-
mon classes from both the Princeton Shape Benchmark (Shi-
lane et al. 2004) and sketch dataset (Eitz et al. 2012). Fig. 2
shows some examples of sketches and shapes from SHREC
2013 dataset. There are 1258 shapes and 7200 sketches in
SHREC 2013, which are grouped into 90 classes in total.
The number of shapes in each class is not equal, about 14
in average. While the number of sketches for each class is
equal, 80 in total. For each class, there are 50 sketches for
training and 30 for testing.

Fig. 3 shows some retrieved examples on SHREC 2013
dataset. The query sketches are listed on the left first column,
namely, airplane, chair, potted plant, hand, hot air balloon,
horse, ice cream and pickup truck. The top 12 retrieved mod-
els are listed on the right side, based on their ranking orders.
The correct retrieved models are marked with green color,
while the wrong results are marked with red color. As we
can see from Fig. 3, for the classes of airplane, chair, potted

plant and hand, all the 12 retrieved models are correct ; for
the classes of hot air balloon and horse, the proposed method
first retrieved correct examples, and then wrong examples,
because there are too few examples in these two classes, less
than 12. For the last two classes, ice cream and pickup truck,
the proposed method retrieved several wrong examples, due
to the geometrical similarity among these 3D shapes.

Sketch 
feature 

Shape 
feature 

Figure 4: Visualization of the deep learned sketch features
and shape features on SHREC 2013 dataset. The features
are grouped in different colors by class labels.
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Figure 5: Performance comparisons on SHREC 2013
dataset.

We also visualize the deep learned features by using PCA
to reduce the dimension from 100 to 2. Fig. 4 shows the vi-
sualization of the distributions of the deep transformed fea-
tures. All the features are grouped in different colors by their
class labels. As we can see in Fig. 4, features with the same
label are grouped together, while features with different la-
bels are separated away. Taking the class of airplane as an
example, the features of the sketch samples are grouped to-
gether, and the features of the 3D shape samples are also
grouped together; features from both domains are close to
each other, meanwhile away from other classes. This is just
a coarse visualization of our proposed method, which could
roughly verify the effectiveness of our proposed method.

Precision-recall curve is a common metric to visually
evaluate the retrieval performances of different algorithms.
Fig. 5 shows the precision-recall curves of our proposed
method as well as the state-of-the-art methods reported in
(Li et al. 2014) on SHREC 2013 dataset. The magenta
curve indicates our proposed method. As we can see in
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Table 1: Performance comparisons of different evaluation
criteria on SHREC 2013 dataset.

NN FT ST E DCG mAP
COMP 0.164 0.097 0.149 0.085 0.348 0.116
RCDM 0.279 0.203 0.296 0.166 0.458 0.250
KGLR 0.110 0.069 0.107 0.061 0.307 0.086
DSP 0.017 0.016 0.031 0.018 0.240 0.026

WCNN 0.405 0.403 0.548 0.287 0.607 0.469
DCML 0.650 0.634 0.719 0.348 0.766 0.674
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Furuya(CDMR( SM =0.05, =0.6))

Furuya(CDMR( SM =0.05, =0.3))

LI(SBR-VC( =1))
Li(SBR-VC( =1/2))
Tatsuma(OPHOG)
Tatsuma(SCMR-OPHOG)
Zou(BOF-JESC (Words800_VQ))
Zou(BOF-JESC(Words1000_VQ))
Zou(Zou(BOF-JESC(FV_PCA32_Words128))

Figure 6: Performance comparisons on SHREC 2014
dataset.

Fig. 5, our proposed method could significantly outperform
state-of-the-art methods. As the recall value increases, the
precision value of our proposed method is at least dou-
ble times higher than those of the state-of-the-art methods.
In addition, the precision value of our method is very sta-
ble and decreases very slowly when recall is small. Ex-
cept for the precision-recall curve, standard metrics, in-
cluding NN, FT, ST, E, DCG and mAP, are also calcu-
lated to evaluate our proposed method and the following
methods, namely (Li et al. 2014)(COMP), (Furuya and
Ohbuchi 2013)(RCDM), (Saavedra et al. 2012)(KGLR),
(Sousa and Fonseca 2010)(DSP) and (Wang, Kang, and Li
2015)(WCNN). Table. 1 shows the comparison results on
SHREC 2013 dataset. As we can see in Table. 1, for all
the evaluation criteria, our proposed method could outper-
form the above methods. And the improvement is signifi-
cant, about more than 30% gain in average compared to the
best reported method (Wang, Kang, and Li 2015).

Retrieval on SHREC 2014 dataset
In this subsection, we test our proposed method on SHREC
2014 dataset (Li et al. 2015). SHREC 2014 is a large scale
sketch track benchmark for sketch-based 3D shape retrieval,
which consists of shapes from various datasets, such as
SHREC 2012 (Li et al. 2012) and the Toyohashi Shape
Benchmark (TSB) (Tatsuma, Koyanagi, and Aono 2012).
The dataset has about 13680 sketches and 8987 3D models
in total, grouped into 171 classes. SHREC 2014 dataset is
quite challenging due to its diversity of categories and large
variations within class. The number of shapes in each class
varies from less than 10 to more than 300, while the number

Table 2: Performance comparisons of different evaluation
criteria on SHREC 2014 dataset.

NN FT ST E DCG mAP
RCDM 0.109 0.057 0.089 0.041 0.328 0.054
COMP 0.095 0.050 0.081 0.037 0.319 0.050

TSB 0.160 0.115 0.170 0.079 0.376 0.131
WCNN 0.239 0.212 0.316 0.140 0.495 0.228
DCML 0.272 0.275 0.345 0.171 0.498 0.286

sketches for each class is equal to 80. For each group, there
are 50 sketches for training and 30 for testing.

Fig. 6 shows the precision-recall curves of our proposed
method with the state-of-the-art methods on SHREC 2014
dataset. The magenta curve denotes our proposed method.
As we can see in Fig. 6, when the recall value is about
less than 0.5, the precision value of our proposed method
is higher than that of those methods; while when the recall
value is about larger than 0.5, the precision value of our pro-
posed method is inferior to that of those methods. Generally,
people are more likely to examine top retrieved objects, in-
stead of latter one, due to time and efforts, etc. Based on the
above assumption, the precision-recall curve roughly indi-
cates that our proposed method has better retrieval perfor-
mance compared to the state-of-the-art methods.

In addition, we also compare our proposed method with
the following methods, namely, (Furuya and Ohbuchi 2013),
(Li et al. 2014), (Tatsuma, Koyanagi, and Aono 2012)(TSB),
(Wang, Kang, and Li 2015)(WCNN). The metrics, including
NN, FT, ST, E, DCG and mAP, are used to evaluate our pro-
posed method. Table. 2 shows the comparison results of our
proposed method and the above methods on SHREC 2014
dataset. In all evaluation criteria, our proposed method could
outperform the aforementioned methods, which could verify
the effectiveness of our proposed method.

Conclusions
In this work, we developed a novel deep correlated met-
ric learning method for sketch-based 3D shape retrieval.
Specifically, we first extracted raw features for sketches and
3D shapes separately. For sketches, we used pre-trained
AlexNet to extract features; for 3D shapes, we extracted 3D-
SIFT, which was further encoded by LLC to get a global de-
scription. Then our proposed method learned two deep non-
linear transformations (one for each domain), by simultane-
ously training two deep neural networks. The deep learned
transformations mapped features from both domains into a
nonlinear feature space, guaranteeing the discrimination of
features within each domain and distribution-consistency of
features across different domains. Our proposed method was
evaluated on two benchmarks, SHREC 2013 and SHREC
2014. And the experimental results demonstrated superior-
ity over the state-of-the-art methods.
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